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Abstract

A hardware discrete event simulaticu (DES) coprocessor was designed to eliminate
synchronization overhead as a possible bottleneck. The target architecture is an eight
node Intel {PSC/2 Hypercube, but this design has applicaticn to future CPU designs
that wish to incorporate on-chip architectural features tc better support parallel processor
synchronization. A structural description of a general-purpose DES hardware coprocessor
is given with approximately 90 percent of the components written at the gate level. The
remaining coniponents use low-level beLavioral descriptions. While the DES coprocessor
microcode impleinents the Chandy-Misra protocol, general-purpose support for a wide-

range of protocols was a primary hardware design objective.



Design of a Hardware Discrete Event Simulation Coprocessor

1. Introduction

1.1 Background

Computer simulations are used in 3 broad range of diverse applications such as
engineering, medicine, social sciences, and the military. This thesis effort is primarily con-
cerned with its usage in the military environment. Simulations were traditionally designed
for and executed on sequential processors. However, significant increases in the size and
complexity of simulations over the past 20 years have resulted in simulation models “whose
computational requirements cannot be reasonably satisfied with even the fastest sequential

processors [17:8].”

The Air Force has a large investment in electronic hardware. As the size and com-
plexity of these hardware components grow, so do the development costs. The Department
of Defense (DoD) started the Very High Speed Integrated Circuit (VHSIC) program to en-
courage the development and use of high-density integrated circuits in military systems.
VHSIC technology is heavily dependent on the simulation of these large, complex circuits
to verify the circuit design prior\ to chip fabrication. Validation of circuit functionality and
fault tolerance testing is essential to chip verification. This complex testing, performed
through simulation, can consum%. months of computer time and has become a bottleneck

in the logic design process [6:445].
\
In 1983, the VHSIC Rardware Description Language (VHDL) program was started

to support standard tools required to design, test, and document large-scale circuits more
efficiently and effectively. In 1987, many improvements to the VHDL language led to
the JEEF Standard VHDL Langu;ge Reference Manual. VHDL has become the industry
standard for simulation of large-scale circuits and also performs the important task of

documentation of the circuits. Due to wide-scale acceptance of VHDL, the Department of




Defense Advanced Research Agéncy (DARPA) sponsored the QUEST project. The main
objective of the QUEST project is a thousand-fold speedup for VHDL eimulations.

In addition to the VHDL simnlations required for VHSIC chip verification, a thor-
ough timing analysis should be performed and fed back into the VHDL simulation to
provide increased accuracy. Speedup of a VHDL simulation is not complete without real-
istic timing information to prove circuit performance. ‘A transistor-level circuit simulator
should be used to perform the timing analysis for accurate simulation models. H the cir-

cuit simulation meets the measured timing constraints, then the circuit is more likely to

perfcrm as expected.

1.2 Problem

The limitations of traditional sequential processors have led to increased interest in
the area of parallel computer architectures as well as hardware simulation accelerators to
increase simulation performance. The use cf parallel systems has several obstacles inherent
to paralle] processing that must be minimized to approach maximum speedup. Among the
obstacles to simuiation acceleration are: the communications overhead associated with
the necessary exchange of event messages between logical processes, the load imbalance of
logical processes to processors, and the synchrcnization delay necessary to ensure event-
driven simulations do not process events out of time-stamp order. The communication
tasks on parallel architectures require significant simulation time and often contribute
to processor idle time while the source processor waits for an acknowledgemént from the
destination processor. To free up the processor for event processing, a hardware copro.essor

can be utilized tv off-lvad some communication overhead. [21:6-2] ," .

This thesis effort will use the results of the requirements analysis performed by Taylor
and confront many of the remaining issues on how to implement a hardware accelerator
using the conservative Chandy-Misra paradigm on a parallel multiple inétmction, multiple
datapath (MIMD) system [21]. The primary objective of this thesis effort is to perform a
proof of concept for hardware simulation accelerators. Basically, this thesis effort shows

that the synchronization overhead, associated with the passing of messages between nodes



and event management, can be off-loaded to a hardware accelerator from each of the Intel

Hypercube! iPSC/2 80386 node processors, providing significant simulation speed-up.

1.8 Summary of Current Knowledge

Simulation models are classified by Pritsker as either discrete, continuous, or com-

bined. The basis for this classification is how the dependent variables of the simulation

model change with respect to time. Discrete simulation is further classified by the rela-

tionship between events, activities, and processes [16:63-64).

1.8.1 Discrete Event Simulation (DES) A discrete event simulation model occurs
when the dependent variables change only at specified points in simulated time, referred

to as event times. A DES model can be formulated by:

1. Event Orientation. Event orientation defines the changes in state that occur at
event times, determines the events that can change the state of the system, and then

develops the logic associated with each event type.

2. Activity Scanning Orientation. Activity scanning orientation describes entity activ-
ities in the system. The events which start or end the activity are nct scheduled
by the modeler, but are initiated from the conditions specified for the activity. This
type of DES could be considered condition-driven.

3. Process Orientation. Process orientation describes entity flow within the system and
is more directly related to standardized statements within a simulation language.
The language statements are used to determine whether conditions or events have

occurred, thereby signaling the need for system updating.

The objects within the discrete system are called entities. The state of the system can
change only at an event time [16:63-64).

1.8.2 Continuous Simulation A coatinuous simulation occurs when the dependent

variables can change over the entire simulation time. The dependent variables are called

YHypercube is a registered trademark of the Intel Corporation.




state variables. Models of continuous systems are frequently written in terms of derivatives.
Time is divided up into small time slices called steps. Continuous simulation languages for
digital computers normally employ a block or statement orientation. A block orientation

emulates a circuit component of an analog computer and a statement orientation models

differential or difference equations [16:63-64).

1.8.8 Combined Discmté-Continuous Simulation A combined discrete~continuoué
simulation occurs when some dependent variables can change only at discrete times and
others can change over the entire simulation time. There are two types of events that can
occur in combined simulation: time-events and state-events. Time-events are those events
which are scheduled to occur at specified times and state-events are those events that are

not scheduled, but occur when the system reaches a particular state [16:63-64].

This thesis effort will focus on the area of discrete event simulation. The CAR-
WASH simulation model developed by Lee will be used as a base-line for all performance
measurements [12]. Along with characterizing the CARWASH simulation, Taylor devel-
oped a VHDL behavioral description of a hardware simulation accelerator, demonstrating

the feasibility of improving simulation performance by ofi-loading the communication and

synchronization overhead [21:6-2].

1.4 Constraints

This thesis effort focuses on the simulation acceleration of all discrete event simu-
lation models; therefore, the simulation acceleration of a specific application cannot be
guaranteed. A special-purpose hardware accelerator might be required for an application

specific model to guarantee maximum performance gains.

All of the simulation test results gathered for this effort were compiled on the Intel
iPSC/2 hypercube. The test data provides a base line to perform speedup calculations, but
without realistic event processing, the simulation test data could appear biased. Therefore,
speedup is quoted in terms of SPECTRUM filter speedup leading to an overall system

performance gain. The amount of system performance increases can be easily changed by

the length of the spin loops used to emulate the event processing time. Overall speedup




is application-dependent when using the DES coprocessor. Larger event processing time

leads to decreased speed up.

All of the VHDL simulations were conducted on the AFIT VLSI network of Sun
Sparc stations?. Each of the systems had 64 Mbytes of system memory and a variable
size swap space. This constraint caused the size of the DES Content-Addressable Memory
(CAM) to be down-sized to 128 words. The original target size was 1024 32-bit words.

This limitation led to smaller simulation runs and less accurate results.

1.5 Scope

The goal of this thesis effort was to perform a proof of concept for off-loading synchro-
nization overhead to a hardware simulation coprocessor. This research focuses on modeling
the hardware coprocessor at the gate level; therefore, a VHDL structural description was

constructed for each component of the coprocessor.

The proof of concept was documented by a VHDL structural description. The circuit
design was validated through VHDL simulations, and speedup was computed when using
the DES coprocessor. '

1.6 Standards

The evaluation of simulation speedup is sometimes ambiguous or biased to infer the
desired speedup goals are met. Logic simulation performance is ra‘ed using a different
measurement criteria throughout the research. Common measurements of logic simulation
performance include gate evaluations per second, instructions per second, and events per
second. Simulations rated using gate evaluations per second are usually slower than those
rated using events per second. Stating rates in gate evaluations per second overstates
the performance since the gate evaluation rate includes the inactive gates that require no
processing time [8:43). This thesis effort compares the execution times of the discrete event

simulation with and without the DES coprocessor to quantify the speedup obtained.

3Sparc is a registered trademark for Sun microsystems.




1.7 Approach/Methodology _

The requirements analysis and VHDL behavioral description by Tayior provided a
basis for the direction of this thesis effort [21]. The first step of this research was to perform
a cumplete structural decomposition of the VHDL behavioral description of the hardware
simulation coprocessor. The primary objective of the decomposition was to determine the
feasibility of using commercial off-the-shelf (COTS) products and the possibility of using
MAGIC, a chip fabrication editor, to layout some of the components.

Once the decomposition was complete, the development of a gate-level structural
description using VHDL was necessary for a prbof of concept. The structural description
uses realistic signal propagation delays for each gate within the circuit. The propagation
delays are built into the Synopsys design compiler library written by Brothers [2]. These
delays were extracted from HSPICE, a timing analysis tool, runs on the respective CMOS
gates. The library only provides a “NAND”, “NOR", “INVERTER", and a D Flip-Flop.
All of the required components can be constructed from this basic set of gates. Stringent
simulation testing was conducted to ensure DES functionality would support general pur-
pose simulations. A VHDL test bench was constructed to provide a high-level model of a
Hypercube node.

Once the structural description was complete, each of the five SPECTRUM func-
tions was written at the microcode level. The five functions implemented are initialize
simulation, get event, post event (incoming message), post message (outgoing message),
and advance simulation time. For this hardware coprocessor, the advance time function is

built into the Get Event routine.

1.8 Thesis Outline

Chapter II is a synopsis cf information gathered to support this research effort.
Chapter IIT outlines the methodology used to attack this research effort and to accomplish
the objectives stated in the problem statement. Chapter IV is a detailed discussion of the

hardware design ircluding the use of standard components and implementation-specific

components interfaced together to obtain the functionality needed. A detailed description




of the microcode written to effectively use the DES coprocessor and implement the Chandy-
Misra protocol filters is included in Chapter V. Chapter VI outlines the coprocessor test
plan and the results obtained from the testing process. Chapter VII provides the thesis

results and the recommendations for future actions in this area.




II. Simulation Acceleration Issues

2.1 Introduction

This chapter supplies much of the Ba.ckground information that was used to make
decisions during the design phase. Simulation acceleration techniques are discussed in
- detail to provide some basic knowledge needed to understand some of the uniqné problems
that might be encountered. Different types of simulations are discussed to provide more
information required to fully supi:ort all of the functions within a given simulation type. , \, o
Some of the simulation constraints are discussed to ensure an unrealistic design is not a
attempted. In any given simulation, software and hardware acceleration might be possible.

This chapter also discusses some of the software approaches to simulation acceleration.

2.2 Simulation Acceleration Techniques

Simulation speedup is necessary to make the simulation of complex models practical.

Model and implementation speedup are two methods of measuring simulation speedup.

Model speedup is measured by the ratio of sequeﬁtia.l to parallel time when the best

implementation is used on both systems. This is the only speedup metric which truly \_i. P

- reflects speedup. Implementaﬁon speedup is measured by the ratio of sequential to parallel |
wall-clock time when there is only one implementation of the model. [23:1-7)

To ensure speedup is stated correctly, only model speedup is considered. Stating -

implementation speedup could invalidate the other legitimate results of the research. S

2.2.1 Simulation Types Simulation models are categorized as either discrete, con-
‘g tinuous, or combined. State changes within the discrete simulation model can be further
\ divided into time-driven and event-driven. The dynamic behavior of a physical system is

examined by tracing various system activities as a function of time. Computer simulation

models can change state only along specific time boundaries.

) Time-driven simulation is considered a synchronous method. In this interval-oriented
approach, time is advanced from time t to t + At in uniform fixed increments of At. /

Processing of messages occurs only at the discrete time boundaries. The second method, L7




event-driven simulation, is asynchronous and time advances along event boundaries. Using
this a.p‘j;roach, time is “incremented from time ¢ to the next event time ¢, whatever the

value of ¢’ [14:136).”

The start of the VHSIC program shifted the focvs of simulation speedup in the mili-
tary to logic simulation. The event-driven method is well-suited to digital logic simulation
where only a small portion of the circuit, typically 10-15 percent, is active at a given
time [5:67]. In the time-driven method, every time interval must be checked for candidate

events. These facts reinforce the selection of the event-driven approach.

W:thin the area of event-driven simulation there are three major event sequencing

approaches. Any of these three approaches can be used for a practical implementation.

- 1. Event scheduling - ihis approach views the system as a whole; a complete description

of everything that occurs is given when an event takes place, and subsequent events

are scheduled by specifying their time of occurrerce.

2. Process interaction - this approach is concerned with the steps taken during the

processing of an event and the interaction between the actions.

3. Activity scanning - this approach does not require an event list. An activity is
defined as the state of an entity over an interval and an activity is bounded by any
two successive events. This approach is more attractive than the event scheduling

approach, which requires an up-to-date future events list. [14:154-155)

2.2.2 Simulation Conr*raints When striving for enough speedup to make a qual-
itative difference, some constraints limit the performance of the simulation. The basic
approach to increase logic simulation speed is to write the code in assembly language.
This approach usually results in less than a three-fold speedup. The next approach relies
on a faster microprocessor resulting in another three-fold speedup. Combining these two

approaches could result in a six- to nine-fold speedup. [3:139}

The new systems which combine the previously mentioned approaches are rated
e by gate evaluation speeds and event speeds. A gate evaluation represents a change in the

input, while an event represents a change in the output. One event relates to approximately




2.5 evaluations. Accelerators that are rated in evaluations per gecond are generally much
sldwer than those rated in events per seccond. When a rate is stated, the logic level of
evaluation should be considered. A compiled-code simulator will appear to run faster
than an event-driven simulator because the compiled-code simulator evaluates every gate
at every clock pulse; A compaﬂson can be meaningful between these two systems only
when the activity level of the circuit is considered. Compiled-code simulators usually don’t
provide a timing analysis. [8:43-44] |

Process synchronization is a neceséary limitation that cannct be completely over-
come. The realizability condition places the constraint of requiring processes at time ¢
to be affected by only messages at or before time ¢. This requirement synchronizes the

processes to ensure accurate results are obtained [13:45).

Another constraint on speedup is the problem of deadlock which occurs when using
the Chandy-Misra approach to computer simulation. Deadlock occurs when all processing
stops because every processor is waiting for an event that will never take place. If this
problem is not resolved, the simulation cannot complete. Chandy-Misra uses null messages
to eliminate this problem [4:57]. A null message is a message sent to update the time on a
given input arc to possibly enable the downstream process to progress. Deadlock detection
and recovery can also be used to overcome a deadlock state. Probes can be used to detect
deadlock. Probes are messages sent to child nodes requesting status information [4:202].

Both approaches will work, but not without performance degradation.

2.2.83 Simulation Approach Specialized hardware and general-purpose hardware are
the two prevalent approaches to hardware acceleration. Within each of these areas, proper
partitioning and limiting inter-processor communications are essential to fully utilize the
simulation accelerator. However, applying logical partitioning with a specialized hardware
accelerator requires significant trade-offs. A general-purpose hardware approach can be
designed to fully utilize a wider variety of logical partitioning methods as well as software

acceleration techniques to obtain speedup over a larger range of applications.

10




2.2.8.1 Hardware Utilization A general-purpose hardware approach to simu-
lation acueleration must meet many constraints to be acceptable. Two of the most impor-
tant constraints to meet are simulation accuracy and flexibility. Accuracy of a simulation
refers to the level of exactness obtained when comparing the physical model and the log-
ical process. The flexibility of a simulation refers to its ability to support a variety of

approaches.

D’Abreu believes that the response of the simulator, in terms of predicted signal
values versus time, must correspond very closely with the response of the actual circuit
[5:63). An easy way to increase the accuracy of a model involves the use of multi-valued
logic. This research effort used multi-valued logic seven (MVL7). Using various types of
timing delays for all of the primitives is another way to increase a model’s accu:i;acy. This
point becomes very clear during the analysis of a large circuit. If realistic timing delays

are not used, then incorrect results could be obtained. [5:63-65) ‘

A special-purpose hardware simulator can provide optimum speedup for}a specific
application. Therefore, tke requirement for flexibility must be heavily weighteﬂ to make
the general-purpose approach advantageous. The rollback chip proposed by F\mmoto isa
good example of using a special-purpose hardware chip to increase the perforniance of a

specific application [7:81).

2.2.3.2 Distributed Protocols Within the area of simulation mecha.nis“;ms, there
are two prevalent approaches to computer simulation. First, the Time Warp 6perating
System (TWOS) is considered an optimistic approach because it continues processing all
incoming messages relying on rollback for process synchronization rather than waiting for
all input arcs to have an event present. The second approach, the Chandy-Misra protocol
is considered a conservative method since processing continues only when all input arcs
have received a time-stamped message.
The Time Warp mechanism is based on the Virtual Time paradigm. Virtual Time is
defined by Jefferson as a method of organizing distributed systems by imposing on them a
temporal coordinate system more computationally meaningful than real time [10:404]. In

this paradigm, processing continues until a message comes in with a time stamp (virtual
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receive time) earlier lan any message already processed and sivting in the output 'queue.
When a message is received out-of-order, a rollback of time must occur back to the time
just before that of the incoming message. To accomplish this all side effects of the messages
already processed are rolled back so that the system will appears as if the messages have

not yet been processed [10:405-406].

The TWOS is designed to suppbrt large-scale, irregular discrete event simulations.
The TWOS runs a single simulaticn at a time on as many processors as are available. There
are no static restrictions on the programmer. The TWOS is an event-driven mechanism
that uses message passing to communicate. The messages, at a minimum, are composed
of the sender, virtual send time, receiver, and virtual receive timg. All messages contain a
sign field which is used to identify it from its antimessage. The original message retains a
positive character in the sign field and the antimessage retains a negative sign. Messages
within this paradigm do not have to arrive in time-stamp order. Message proceésing
continues until the input queue is empty. There is only one input queue for all incoming
messages and one outgoing queue for all outgoing messages. Time Warp a,ppli‘es primarily

to event-driven simulations. There are three basic mechanisms controlling the operation

of this paradigm.

1. Local Control Mechanism - this mechanism controls all local processing. It executes

those processes that are the oldest with respect to the current time.

2. Roll Back Mechanism - whenever a message is received with a virtual reczive time
in the past, the roll back mechanism starts performing the following steps: restore
the last saved state before time ¢ (new receive time), discard saved future states, and

start executing messages at time ¢.

3. Giobal Control Mechanism - the global virtual time (GVT) is used to determine sys-
tem progress and performs many system functions. The main concerns of the global
control mechanism are: memory management, flow control, normal termination de-

tection, error handling, I/0, snapshots, and recovery.
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The GVT is responsible for removing all saved states that are earlier in time than the
GVT. There must always be one saved state older than GVT to enable a process to roll
back to a correct state. [10:410-419]

The actions necescary to roll back a process are achieved through the use of antimes-
sages. For every message there is an antimessage that is exactly like the originé.l message
except for its sign. Whenever a message is sent to a receiver's input queue, an antimessage
is placed in the sender’s output queue. Antimessages make it possible to eliminate ali side

effects of a message before the simulation is adversely affected.

Whenever a message and its antimessage appear in the same queue the)} annihiiate
each other. A negative message will cause a rollback to occur at the destination if the
original message has already been processed. If the originai message is still present in the
receiver’s input queue, annihilation occurs without causing a rollback of the process. These
simple rules are essential to the robust antimessage protocol. The cost of this approach is

simply the cost of the rollback and antimessage overhead [10:414,416].

The Chandy-Misra algorithm maps physical processes (PP) to a distributed network
of logical processes (LP) communicating via time-stamped messages. This approach re-
quires an entry on every input arc for all communicating processes. This requirement
ensures that events arriving in time-stamp order are processed in order. Any entities that
interact at discrete intervals of time can be simulated by a network of processes communi-
cating via messages. Predictability must be met by every physical system. This conditicn
requires that for every cycle at time ¢ there is a PP in the cycle and a real number ¢, € > 0,
such that the messages sent by PP along the cycle can be determined up to t + ¢ time in
the future. There is a logical process corresponding to every PP. [13:45-46)

The requirement for a message on all input arcs produces a'problem of simulation
deadlock that must be addressed. Chandy-Misra uses the concept of null messages to avoid
the deadlock problem. A process sends a message of the form (¢, null) to denote the lack
of a real message for the receiving process during a given time interval. A null message
is also sent to all output arcs whenever a null message is received and processed bty a LP.

Measurements show that a large fraction of the messages sent are null messages[4:201-202)].
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The overhead associated with null messages can be eliminated by using a deadlock detec-
tion and recovery algorithm. However, this approach has not been proven to outperform
deadlock resolution via null messages.

The deadlock detection and recovery simply consists of allowing a simulation to
continuously deadlock and then recover. A special process called the controller is used to
detect deadlock. The controller is then tasked to initiate a combutation forcing the LPs
to advance their local clocks. Although the controller is a central process, since it does not

carry out any computations, it is not expected to be a bottleneck. [4:202]

2.2.3.8 Hardware Copmceséor Implementation This section outlines the func-
tions and architectural factors that will be considered during tliis research effort. The
areas of concern are: parallel discrete event simulation (PDES), the direct connect module
(DCM), and Taylor’s implementation [21]. '

The PDES framework is a discrete event simulation method that uses global reduc-
tions on state information to expedite the dissemination of critical information. PDESs
consist of processes that communicate using time-stamped messages. A local clock is used
to generate the respective timestamps of the messages in the system. Reynolds mentions
the use of an auxiliary pai.llel reduction network {PRN) that can ﬁssg@nate required
global information many orders of magnitude faster than it can be disseminated in typicul
distributed memory multicomputers [15:167]. The following assumptions should be con-
sidered tc ensure that thé worst case scenario does not cause simulation failurc. These

assumptions are:

1. An LP can communicate with any other LP.
2. Events can be processed in zero-time.
3. Events can be preemptive.

4. Events can be spawned and consumed.

The ability to handle an event from any other LP has often been touted as a majos
.'vantage of PDES protocols that employ aggressive processing strategies [10].
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The tkree global values used by PDES’s to enhance parallel simulation are minimum

next event time, smallest unreceived message, aud sum. The minimum next event time,
T,, is the next event to be executed on LP;. The smallest unreceived message, T'y,
is simply the timestamp of the longest outstanding message from LP; without a receive
acknowledgement. The sum, T, is the number of messages sent minus the number of

messages received. [15:168-169)

The synchronization algorithm used to support the PDES has four functions: test,
sendmsg, rcvmsg, and revack. The test function monitors the relation between its next
event time, T,, and T,. Whenever they are equal the LP; can process its next event. The
sendmsg function maintains a sequence of unacknowledged message pairs for its host LP.
The rcumsg function adjusts the receiving LP’s T, and sends an acknowledgement back
to the sending LP. The revmsg function also decrements i, The rcvack function removes
message pairs from the sending LP’s outstanding message sequence and adjusts T,. The
kéy feature to this algorithm is its ability to identify the smallest next event time even

when there are outstanding messages. [15:169-170]

-

The proposed framework provides efficient support for deadlock-free parallel sim-
ulation. This protocol, operating alone, applied to a typical PDES, would not support
concurrency among LPs. This algorithm becomes most useful when the LP that can prec-
cess safely needs to be determined since it promotes the use of an aggressive protocol

running on top of the framework. [15:171-172]

-All inter-node communication on the Intel iPSC/2 Hypercube must be sent through
the DCMs. If the DES could communicate directly with a DCM, more of the communica-
tions and synchronization overhead could be eliminated, resulting in additional speedup.
However, since information regarding the DCM is proprietary, work in this area was not
possible. Instead, CPU interrupts are required to transfer information between rodes.
Figure 1 shows the system configuration for inter-node communication with the proposed

placement of the DES.

Figure 2 shows the ideal placement of the DES, connected in parallel with the DCM

and the host node. This configuration would enable the DES coprocessor to receive and
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Figure 1. Inter-node Communication Path

transmit messages directly to other nodes without having to interrupt the CPU. Cther
computer architectures could have similar limitations on their inter-node communications.

These constraints could limit speedup experienced when using a DES accelerator.

2.8 Summary

In this ch#pter, various approa.ﬁhes to simulation and the means of speeding up ex-
ecution of these simulations are discussed. Time-driven and event-driven simulations are
the two prominent approaches to simulation advancement. Simulation time is advanced
either on discrete time boundaries or on event boundaries. The Chandy-Misra and Time
Warp protocols were also discussed in order to lay out different methods of implementing
simulations to ensure true operation is reflected. One of the simulation time advancement
schemes must be incorporated into a given protocol to properly model a physical sys-

tem. This research effort implements an event-driven simulation using the Chandy-Misra
paradigm.
This research effort focuses on the design and the simulation of a general-purpose

hardware accelerator which can be used to speedup simulations using a wide range of

protocols. Other research efforts are focused on simulation acceleration through software
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Figure 2. Desired Inter-node Communication Path

means, such as filter modifications and more effective partitioning algorithms. Many of

the acceleration mechanisms can be used in combination with each other to achieve a

multiplicative effect.
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III. Approach/Methodology

3.1 Introduction

This chapter is an overview of the approach used to design the DES coprocessor.
A structural decomposition of Taylor’s code was conducted to determine and quica.lly
group the functions into components [21). Once the decomposition was completed, the
components were constructed and interfaced together to form the design. The software

procedures were developed to take full advantage of the hardware design.

The software procedures are in the form of the SPECTRUM testbed filters imple-
mented to support the Chandy-!Misra. protocol with null messages. Taylor’s behavioral code
which implemented the SPECTRUM filters was decomposed to supply the steps needed

to fully support the conservatxve protocol [21].

Once the 1mplementatlon of the design in VHDL was completed, testing procedures
were developed to adequately‘fl test the design. This chapter also inchides a high-level
approach to the tests used in t;his research effort. '

|
8.2 Structural Decomposition}

The first step in the desigxrn process ﬁras to structurally decompose Taylor’s behavioral
VHDL code. This process re#ulted in a logical grouping of functions into four areas:
host-node interfacing, LP-spedﬁc information storage, next-event list management, and
architectural control. Figure 3 provides an overall diagram of the DES components and
the system interfaces required for simulation execution. A detailed description of the

components used to implement each of the four functional areas is included in Chapter IV.

8.2.1 Host-Node Interfacing Since the Intel Hypercube node uses a stﬁdud 80386
CPU for event processing, standard 80386 signal definitions were followed during the de-
sign of the DES coprocessor. There are five logical components that evolved from this
requirement and they are: data interfacing, handshaking port, interrupt handling, op-

code/operand determination, and select generation.
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8.2.1.1 Data Interfacing The DES and host system both have 32-bit buses.
A parallel I/0 interface was determined to be the best approach to transferring data since
it allows bi-directional flow of data and can be controlled using the standard set of 80386
signals available on the Intel Hypercube. '

3.2.1.2 Handshaking Port Another device used in direct support of the data
interfacing device was a handshaking system. This system has to provide state information
to the DES and the host system concerning the interface status. A 4-bit status register
was chosen to support this requirement because the only four status parameters of concern

are: ready status, error status, data ready for the DES from the host, and data ready for

the hostlfrom the DES.

8.2.1.8 Interrupt Handling In order to force the host system to process DES
events, an interrupt process had to be developed. Since 80386 CPU uses the lowest order
eight bits of the system data bus to represent an interrupt vector, an 8-bit register to pass

the vector to the system data bus was implemented.

3.2.1.4 Opcode/Operand Determination In order for the DES to distinguish

between an opcode and an operand, a device had to be developed to check system address

bit two which identifies the transaction type. A 1-bit register is used to hold the transaction

type, opcode or operand, for DES processing purposes.

8.2.1.5 Select Generation The final requirement to properly implement the
interface between the DES and the host system was the development of a component to
provide chip selects for all of the interface devices. A simple combinational logic circuit is

designed to use standard 80386 signals, the system data bus, and the system address bus
to generate the appropriate chip selects.

3.2.2 LP-Specific Information Storage The next functional area of concern was
the storage of the LP-specific information for each LP. This information is required for
every filter called within the Chandy-Misra protocol. Since there are a maximum of 20
LPs per node, 20 partitions were constructed to hold the LP delay (LP_.DELAY), current
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simulation time (SIM_TIME), number of input and output arcs (#.1/0_ARCS), and the

input and output arc encoded identification.

Static RAM, Dynamic RAM (DRAM), and DES registers were all considered for
supporting this requirement. The only advantage to using DRAM is the reduction in the
chip area used per cell. Because only a relatively small memory module is required, chip
area was not the primary concern. Disadvantages of the DRAM are the memory refreshing
circuitry and slower access times which eliminated the DRAM from consideration. Using
DES registers to store the LP-specific information has many advantages. The main dis-
advantage, which eliminates the register approach from contention, is the chip area that
would be consumed on the DES chip. An objective generated during the nverall design
approach was to provide maximum speedup by fabricating the DES on a single large-
frame chip. Meeting this objective and placing all of these registers on-chip is not feasible;
therefore, this approach was also eliminated. The final choice was the use of SRAM to
maintain the LP-specific information. The SRAM is small enough and fast enough to
meet the requirements of this function. Therefore, the SRAM was selected to support this

requirement.

3.2.3 Nezt-Event List Management The next function to be considered was the
retrieval of the next event for processing. This function is required every time a Get Event
opcode is received and an event is ready. Ohly SRAM and a CAM were considered. The
CAM was chosen Yecause it could perform a search of its memory in O(1) time. A RAM
could have been used but the search time would be at best O(log n).

3.2.4 Architectural Control In order to utilize the architecture, some control facility
had to be developed. A detailed description of the subcomponents used to provide the
control for the architecture and the method for supporting a wide range of protocols are

discussed in Chapter IV,
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3.3 SPECTRUM Testbed

During Taylor’s requirements analysis, the primary o .ns found to provide sim-
ulation acceleration was in reducing the synchronization overhead involved with event
formatting, transmitting, receiving, and event-list management. S’.ice SPECTRUM is the
communications interface in use at AFIT for parallel simulation on the Intei iPSC/2 Hy-
percube, it was the primary target to off-load to a hardware accelerator, thereby freeing

up the system for event processing. A detailed description of the implementation of the

SPECTRUM filters is included in Chapter V.

SPECTRUM is the interface between the user’s application program and the system-
level functions. This interface enables the user to write generic simulations without concern
to the architecture of the machine it will reside on. General purpose filters are used to
allow the user to make system calls. Five functions are provided through the SPECTRUM
filters to enable parallel simulation in a well-organized manner using the Chandy-Misra
paradigm.

These functions enable the system to communicate méssages (events) between LPs on
the same nodes or on different nodes. Standard filters such as Post Event and Post Message
are used for this type of communication between LPs. Standard ﬁltérs are also useful when
porting simulation programs across systems by reducing the conversion process. This

provides a more general-purpose environment.

3.8.1 Functions During the decomposition of Taylor’s behavioral code, the steps
required for each of the five SPECTRUM filters were extracted. All of these SPECTRUM
functions are supported by the DES hardware accelerator. Tll\e code is stored in the
control store of the DES coprocessor and is loaded by the bootst?ap ROM. This loading
process is discussed in Chapter IV. The Get Event routine has bQLen modified slightly to
update the simulation time whenever a Get Event opcode is issued by the host node. The
Advance Time function is no longer a separate function; therefore, only four functions
remain to be implemented. In addition to these five functions, the Bootstrap ROM and

Fetch/Decode microroutines were written to support loading of microcode and opcode




processing, respectively. The algorithms followed for each of the seven routines is located

in Appendix A.

3.3.2 Routine design Some sort of phased approach to microcode execution had to
be developed to standardize microinstruction processing. The microcode process for the

DES is based on three phases: fetch, decode, and execute. Each of the four SPECTRUM

functions has a unique opcode that points to a microroutine that controls the DES archi-

tecture. The entire microcode design is implemented with a vertical encoding to reduce the

number of control bits required to perform an instruction. The microinstructions control

 all internal DES components through the use of an opcode decoder.

8.4 Test Approach

The DES test process was implemented in the following four areas: control store and

mapping RAM loading, interrupt generation, error generation, and simulation execution.

A high-level VHDL description of a 80386 CPU was implemented to enable testing in each -

of the areas listed. The test were also checked to ensure events occurred in a determiniatic
fashion. The test process and results from testing are described in more detail in Chapter

VL

3.5 Summary

First, all of the background information was gathered to provide a detailed under-
standing of the subject area. Next, the Chandy-Misra protocol was researched to properly
implement the simulation algorithm chosen for use with the CARWASH simulation. Im-
proper implementation of the algorithm could lead to false speedup results. Once the
background information was gathered, a structural decomposition of Taylor’s coprocessor
was conducted to note all design decisions made during his research effort [21]. This step

provided the information necessary to lay out the path to hardware accelerator completion.

The path chosen, started with the design of a behavioral description of the detailed
system components. After these individual designs were thoroughly tested, generation of

the VHDL structural descriptions began. After testing all of the structural components,
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the micrcoroutines implementing the Chandy-Misra protocol were developed and event

processing began.
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IV. Detailed Coprocessor Design

4.1 Introduction

The goal of this design was to generate an efficient and effective structural description
of the Discrete Event Simulation (DES) hardware accelerator with accurate timing results

to prove that a hardware acclerator can provide substantial speedup.

With the design goals in place, the detailed design of the DES coprocessor is described
in this chapter. This design focuses on decreasing the synchronization overhead at the node
level ra.ther. than the system level. This chapter discusses the implementation of standard
hardware components as well as some of the implementation-specific devices designed to
meet the requirements of the Chandy-Misra protocol. The components developed as a

result of the structural decomposition outlined in Chapter III are described in detail in the

following subsections.

4.2 Component Design Approach

VHDL design tools were heavily used during this research. The automation process
used to create a MAGIC lay out from a behavioral descripticn is included in an OCT-
TOOLS user’s manual written by Kesting [11). There are 30 steps in the automation

process. The tools described in the following subsections are used in this automation

process.

4.2.1 Design Tools Once a hardware accelerator architecture is designed, the im-
plementation phase begins. There are many tools available for use at AFIT that assisted
with this research effort: the Synopsys Design Compiler, EDIF2SGE program, Synopsys
Simulation Graphical Environment (SGE) and Synopsys Debugger were the most effective.
These tools enabled quicker design and implementation of system components than were

possible by practical methods.
This research effort used only “NAND”, “NOR”, and “INVERTER?” logic gates be-

cause these gates are faster and require fewer transistors than the “AND” and “OR” logic

gates. This research was directed towards the use of a standard library of gates. This
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library was supplied by Brothers as part of his dissertation [2]. The library only supported
the use of the gates mentioned in addition to a “D”-type flip-flop circuit. Standardizing the

gates was the first step towards automating the entire construction of the DES coprocessor.

4.2.1.1 Synopsys Design Compiler This tool was very useful for generati‘ng
the VHDL structural descriptions from a simple behavioral description. There were some
restrictions on the tool, such as the lack of support for case statements, variable initializa-
tion, and use of user-defined packages within a behavioral description. These limitations
were easily out-weighed by the ability to produce a complete structural description in a
matter of minutes. The Synopsys Deéign Reference Manual was the priméry source for
all work using this tool [18]. All of the components were designed for speed rather than
area. The requirement to speed up simulation far exceeds the requirement for a smaller
chip area. Standard loads and design for “worst case” conditions should ensure proper
functionality of the chip at all times. All of the DES components were generated using
this tool as the first step to obtaining the structuial description. The design generated in
the design compiler was saved in the engineering data interchange format (EDiF) to be

translated by the EDIF2SGE tool.

4.2.1.2 EDIF2SGE Program This tool was used to translate the component
designs into a format used by the SGE tool. This program required a scﬁpt file and a
configuration file to be written to identify all requirements for the translation. Both files
were located in the Synopsys Simulation Graphical Environment User’s Guide [19:7-18-7-
20). The script file was read into the Design Compiler for proper output file formatting and
the configuration file was used in the conversion to the SGE tool format. The command

was used to convert the EDIF file to the format readable by the SGE tool was edif2sge
FILENAME.edf -c configuration filename.

4.2.1.3 Simulation Graphical Environment This tool has many capabilities
that were not utilized during this research effort. This tool was only used to take the
translated EDIF file and produce a VHDL structural description using a bus to represent

the input and output ports when desired.

26




The individual component schematics were retrieved into the schematic editor and a
VHDL netlist was selected for each component. This command produced all of the VHDL
structural descriptions wiih the proper port formats. Once the designs were complete, the

designs had to be checked for proper functionality.

4.2.1.4 Synopsys Debugger This tool was used to test the behavioral descrip-
tion prior to genefation of the structural description and was also used to test the completed
VHDL structural description after generation. The debugger provided the ability to trace
all of the signals within a given design. This capability was effective when testing all of
the internal component tests prior to connecting the system. Many design decisions were

easily tested by the debugger prior to the implementation of the actual architecture.

4.2.1.5 Lager Place and Route Tool This tool automates the conversion of a
file from a netlist furmat, which can be generated by the SGE tool, to a complete MAGIC

| lay out. This tool was used to complete the automation process.

4.8 Host-Node Interfacing

As outlined in Chapter III, there were five interfacing functional requirements that
were confronted in this research effort. A detailed description of the components used to

meet the five functional requirements is included in the following subsections.

4.3.1 Data Interfacing Component This device provides data transfers between the
DES and the host system. Thgre is one subcomponent called pario_latch_buffer that
contains the latches and buﬂ'er% required to provide 32 bits of temporary data storage. A
mode signal latches the data into the “D” flip-flops and the strobe signal output enables
the data onto the target bus.

An active high RESET signal is used to clear the latches whenever the DES is reset.
All strobe and mode signals from the host system are generated by the select generator
device. The eyétem signals used are discussed in Sectinn 4.3.5. A status register is required
to notify the destination processor of data ready to be processed. The operation of the

status register is described in Section 4.3.2.
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4.3.2 Handshaking Port Device This 4-bit register provides state parameters to
both of the processors. The DES is continually updated with the status. The DES and
the host can change the state variables during any given clock cycle. Figure 4 shows the

configuration of the four bits used to provide status information enabling handshaking

between the DES and host system.

Status to DES 4
Status Data ... e ....\‘.‘.....i..".. S,

: : : ;

| ! ! !

Status Write : i i ' RD/WR Host
I— Ready Error Read Write ‘\2—’
Local Local
4
\\
System Data Bus

Figure 4. Status Word Configuration

Updating the status register is a three-step process. First, the reéuesting processor
reads the status word and checks the bits of concefn. Second, the processor performs the
operation triggered by the value of the bit checked. Third, the processor toggles the bit of
concern by performing a write to the status register with a high value on the input bit to
be toggled and the status write select line activated. |

Bit “0” is set high by the DES whenever it latches data to the parallel I/O device
destined for the hpst system. An interrupt or error signal starts the transmission of data
packets to the host system and the lowest-order 10 bits of the first data packet cc-tain the
count of data packets to follow the original message. S;tcceeding messages do not have to
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be signaled with an interrupt or error bit. Bit “1” is toggled low by the host system after

receiving each message from the paralle] I/O device.

Bit “1” is set high by the host system whenever an opcode or operand is latched into
the parallel I/O device. The host system has to check bit “3” and bit “1” before sending
an opcode to the DES. If either bit is high, the host system must “.ava.it to send an opcode.
If bit “1” is low, the host system can send an operand even though the DES is not in a
ready state. The DES toggles bit “1” low after each message is strobed onto the local data
bus and read into the coprocessor. Bit “2” is the error bit and is used in conjunction with
bit “0” to send an error vector to the host system for processing. Only the DES should
set *he error bit high. Bit “3” is used to provide the ready status to the host system at
all times. After an opcode is sent to the DES, the ready bit is set high by the DES and

remains high until the opcode has been executed.

The status_to_DES port is designed as a direct link to the Micro-Sequence Logic Unit
(MSL) component to provide state information every cycle to enable the MSL to operate
efficiently. All writes by the DES are performed through the ready_bit, error_bit,

read_local, and write_local bits.

4.5.8 Interrupt Handling Component This device uses the standard 386 signals
interrupt request (INTR) and interrupt acknowledge (INTA). The interrupt register is
divided into two processes: INTR_LATCH and IN‘I'R STROBE. The INTR_LATCH process loads
the 8 lower order bits of the 32-bit local data bus into the interrupt register whenever the
INTR signal is high. The INTR_STROBE process then strobes the interrupt vector 6nto the
system data bus for processing by the host system whenever the INTA signal is active. The

output li- es are placed in a high impedence state whenever the INTA signal is inactive.

An interrupt register provides a means for the DES to request processing time. An
interrupt is used only to indicate to the host system that the DES has data to be trans-
ferred. There are three interrupt vectors that are used within the microcode. The Post
Event Message interrupt notifies the host that null messages for the output arcs are ready
to be processed. The Get Event Message interrupt is used whenever a real event message

has been retrieved and is ready to be sent to the host for processing. The Get Event Nulls
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interrupt is used whenever a null event was retrieved and the nulls have been prepared for

the host to transmit.

4.3.4 Opcode/Operand Register This device is used to latch address bit “2” of the
system address bus for future testing. The fetch/decode microcode routines is the only
routine that should receive an opcode. All other routines are expecting operands. This
address bit is latched whenever data is strobed into the parallel I/0 device by the host

processor. This data is constantly read by the DES for microcode branching determination.

If address bit two = “0,” then the data sent to the DES is an opcode. If address bit
two = “1,” then the data sent to the DES is an operand. This distinction is checked several
times in the microcode and will cause an error if anything except an operand is received
after the initial opcode is sent. This 1-bit register was validated during the structural

decomposition described in Chapter III.

4.8.5 Select Generation Device This device decodes all of the addresses and sys-
tem signals and provides chip select signals to the parallel 1/0, status register, and the
opcode/operand register. All of the DES componentsv that interface with the system are

mapped into the I/O space in the system. Therefore, the 80386 M_10# signal has to be low

for the DES to interface with the host. A read or write is signalled by the standard 80386 -

WRRD* signal. All of the signals are presumed to be invalid until the address strobe
(ADS#*) bit is active. The parallel I/O device is triggered whenever an I/O read or write
is asserted with address bit “15” set high. The status register is triggered whenever an
I/O read or write is asserted with address bit “8” set high. The opcode/opéra.nd latch is
triggered whenever the parallel I/O device is triggered and the write bit is active. Sim-

ple combinational logic was used to construct the chip selects for the parallel I/0, status

register, and the opcode/operand register.




Table 1. RAM Partition Layout

| Bits B | Description |
All 32 bits used | LP Delay

All 32 bits used Simulation Time
Two 16 Lit values | #_ARCS_IN|OUT
[ Bits 25 downto 18 | Input Arcs

At most 10 Arcs
Bits 25 downto 18 | Output Arcs
At most 10 Arcs

4.4 LP-Specific Information Stofage Device

The requirement for a device to maintain the simulation information specific to each

LP is outlined in Section 3.2.2. The configuration and use of the SRAM is described in

more detail in the following subsection.

4.4.1 Random Access Memory (RAM) Device This device provides a local memory

device to maintain simulation data uniqﬁe to each LP. The configuration of this component

is taken from Figure 4.3 of Taylor’s requirements analysis [21]. Some of the first desigﬁ
decisions were. made concerning the RAM device. The base pointer addresses and status
registers were moved to the GPRs in the DES coprocessor and the siée of the CAM was
increased to eliminate the need for swap space in the RAM. These enhancements to Taylor’s
design provided faster access to specific RAM partitions and reduced the RAM memory
required by a factor of two. A typica.l LP partition is shown in Table 1. As mentioned in
Chapter III, this device directly supports the Chandy-Misra protocol.

The read and write signals are active high. An active read or write signal witk
a chip select triggers the desired operation in the RAM. The highest order two bits of
the address_in vector are used to select the RAM. These two bits provide expansion
capabilities necessary to support other algorithms that require more control store and
RAM for processing a simulation. Only one of the RAMs is implemented in this design

and is selected whenever the two select bits are low. The data in/out port is used to
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transfer data bétween the local data bus and the RAM device. The RAM devicé is divided

into a memory componexi and a chip select component.

4.5 Nezi-Event List Management Device

In Section 3.2.3 the requirement for a device to manage the next-event queué for
the DES is discussed. As mentioned, the CAM can perform a search in O(1) time. The
configuration of the CAM and the peripheral componerts used to support the next-event

list management function are discussed in the following subsections.

4.5.1 Content Addressable Memoryi (CAM) Device This device is responsible for
event list management for the DES architecture. The CAM was chosen because each word
in the CAM is searched .a parallel. This capability provides significant speedup over other
memory systems, but the to or from address was required to exploif this capability. The
overall design and implementation of the CAM used in this research effort was provided
by Banton as part of his dissertation research [1]. A front end driver was added to the
CAM to free up the DES for other processing requirements. A crqss-wiring device was
also added and is described in the next section. The organization of the modified CAM,

associated front-end driver, and adjacent RAM can be seen in Figure 5.

4.5.1.1 Cross-Wire I/O This device was used to cross-wire the input from
the data bus to the CAM and reverse the output to the local data bus. The term “cross
wiring” in this document will refer to the interconnection of a vector of the form 31 down
to 0 to another component with a vector of the form 0 to 31. The DES components are
all designed using bus input and output ports in the form 31 down to 0 while the CAM
component designed by Banton was designed with the ports from 0 to 31 [1). This device
would not be required in a real hardware circuit and is not included in the Figure 5, but

was used due to the limitations of VHDL.

4.5.1.2 Front-End Driver The front-end driver is designed to free up the DES
coprocessor. The front-end driver performs five functions: Initialize CAM, Find LP Min-

ima, CAM Search , CAM Write, and CAM Reserve Arcs. The corresponding control
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vectors used to trigger each of these operations are shown in Table 2. An example showing

the use of each function follows in Section 5.2.

The data to be used for each of these commands has to be provided on the previous

clock cycle. The data is latched into the CAM and does not change until the completion

of a given CAM operation. The mask used in the CAM for bit matching is provided
by the front end driver. The CAM_COMPLETE signal is toggled high when the operation is

Table 2. CAM Control Map

| CAM Control | Operation |

0920001 Initialize CAM

000010

Find LP Minima

000011

CAM Search

000100

CAM Write

000101

CAM Reserve Arcs
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Table 3. CAM Word Definition

__(_I_Q\_d Bits | Field Name
[0 Valid Bit
1-5 TOLP
6-8 From Node
9-13 From LP
14 Reserved Arc
15- 31 TIME_TAG

completed. The CAM also latches the corresponding address in the adjacent RAM device
that is used to store the memory pointer for each event. The address is latched in to the

adjacent memory input ports whenever a CAM Write or Find LP Minima is completed.

Each CAM word is broken down into fields that provide search fields for word loca- |

tion. Each field has specific meaning which allows the CAM’s parallel search éapa.bilities
to be exploited. The 32-bit CAM words are defined in Table 3. Bit “0” is considered the
most significant bit in this CAM design. '

The MSL periodically checks the CAM_COMPLETE signal to continue normal operation.
The CAH_HATCH'ﬁag is set appropriately depending on whether the CAM opei'ation isa
success or not. The CAM_MATCH flag is set by a logiﬁa] “OR" of all of the TAG bits within
the CAM. For example, if a CAM_WRITE is requested and the CAM_MATCH flag is set to a low
value, then the MSL would continue operation assuming that the CAM is full.

Initialize CAM This cperation is only performed during the initial load.

The read-only control store memory signals the CAM to initialize through the opcode .

decoder. This command requires two control sequences generated by the front-end driver
to complete the operation. This operation also returns a CAM_MATCH high whenever the
command is completed. The TO_LP field within every CAM word is initialized to 31, and
the reserved arc bit is set to zero. All words start in an unreserved mode and are changed

when an input arc is reserved.




Find LP Minimum This function provides the event with the minimum

TIME_TAG to the DES coprocessor. There are five steps in this process:

1. Receive TO_LP field for minima location.
2. Find the minimum for the specified LP using the bit and bitnot lines added to the
CAM design. The front-end driver implements a bitwise search starting at bit “15”

of the CAM word.

(a) A search for all CAM words matching tke incoming TO_LP field are performed.

(b) The words matching the incoming TO_LP field are stored and routed to the
word select lines.

(c) A subset search using the remaining words is performed after adding Bit “15”
to the search pattern. A “0O" is placed in the data input register for matching.

(d) The entire subset of words place their value on the bit and bitnot lines. A
low signal on the bit or bitnot line pulls the respective line low. If no words
match, the line stays at a precharged high level.

i. If bit and bitnot = "0," then some of the words have a “0” in the
searched bit and some have a “1,” and the subset of words with “0” in
this bit position are locked in for the next search.

ji. fbit = "0" and bitnot = "1," then all of the words have a “0” in the
bit searched and the search will move to the next bit.

ili. If bit = "1" and bitnot = "0," then the bit searched is set to “1” and
the search moves to the next bit.

iv. f bit » "1" and bitnot = "1," then there are no matching words used
in the search and the CAM_MATCH flag is set low and the CAM operation is
completed. Setting the CAM_MATCH flag low will cause the calling microrou-
tine to send an error message to the host system because this CAM function
is never called unless an event is ready.

(e) Goto step c until every bit line has a “1” or “0” and the corresponding bitnot

line has the opposite value.
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3. Read the CAM word to the output register. The CAM is designed to automatically
select the CAM word matched that is first in the CAM array.
4. Latch the tag match bits into the corresponding address in the adjacent RAM for

future memory pointer retrieval.

5. Invalidate the valid bit of the CAM word read.

The addition of the driver to recognize when all of the words in the search space
have equal TIME_TAGs provides significant improvement of simulation performance as the
TIME_TAGs get larger. A design deficiency was realized with the use of this feature late
in the thesis cycle. If a lé.rge amount of the CAM words were pulling the bit or bitnot

lines high, a single word cannot pull the corresponding line low. After this problem was

realized, the CAM was modified to resolve this problem.

CAM Search This function provides a CAM search function that is used
during the Get Event routine in the microcode. Whenever a message is retrieved, the
status for a specific input arc has to be updated. This function provides a means to search
for another event, on the input arc in question, to determine if the status bit should be
updated. The input data received represents the FROM node and LP fields of the input
arc. The CAM is searched using this data and the valid bit. The CAM_MATCH lines are
automatically set. A CAM_MATCH = “0” implies there is not a matching word in the CAM.
A CAM_MATCH = “1” implies there is another event on the input arc.

CAM Write This operation is responsible for all writes of validated
words to the CAM. The following steps are followed to perform a CAM Write.

1. Search for a suitable CAM word with‘the valid dbit = "Q."

(a) Search reserved arc space to determine if a reserved arc word is free for word

storage.
(b) Finally, search free CAM space.

2. Write word in the CAM.
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3. Latch tag match bits into the adjacent RAM address latch for future storage of the

memory pointer.
4. Set the CAM_complete bit high.
5. Set the CAM_MATCH bit high if there was a free CAM word found, else set the bit low.
* If the CAM_MATCH bit returned to the MSL is low, the DES must generate a CAM full

_error to the host system.

CAM Reserve Arcs This function is used to reserve one word in the
CAM array for each input arc. This operation is only performed during simulation initial-

ization. The following steps are used to complete this operation. |
|

\
1. Search for unreserved word with the valid bit = “0.” ‘

2. Write the TO_LP field and FROM fields.
|
@
3. Toggle the reserve bit to “1.” i

4. Return a CAM_COMPLETE = “1” signal. |
‘\

4.5.1.3 Adjacent RAM This RAM is designed to store?the memory pointer
for each CAM word. There is a one-to-one mapping between the a.dja.ijccnt RAM words and
the CAM words. The address latched by the Find LP Minima and éAM Write functions
is used to address the respective RAM word. |

This memory latches the address whenever the ADJ_RAM_LATCH signal is high. The
ADJ_RAM_control vector sent by the opcode decoder is used to trigger a read or write
command. If ADJ_RAM_control = “01,” then a write is performed. If ADJ_RAM_control =
“10,” then a read is performed. This device operates like the DES RAM device.

4.6 Architectur-* Control Device

The requirement for this device can be traced back to Section 3.2.4. A detailed
description of the standard and implementation specific components used to construct

the DES are included in the following subsections. The dc.*..1 the DES coprocessor was
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taken primarily from Tannenbaum’s Mic-2 architecture [20:196]. The design was enhanced
to provide more speedup and ensure full support the Chandy-Misra protocol. The DES

coprocessor architecture takes form in Figure 6.

. 4.6.1 DES Clock Design The clock for the DES design provides four-phase pulses
to latch data between components internal to the DES coprocessor. The clock is critical
to the DES control ﬂow‘ architecture. The first phase of each éycle is triggered by the
external system rlock of the Intel Hypercube. Since the system clock is a 25 MHz clock,
the DES coprocessor is designed to run at 25 MHz to enable use of the system clock for

synchronization . Each of the clock pulses is provided by the clocking and unclocking of a

“D” type flip-flop. Required setup and hold times were considered when determining the

proper phase lengths.

4.6.2 Mapping Random Access Memory (MRAM) Unit The MRAM operates much
like the control store input mux and the control store RAM. The RAM device is loaded
during the initial load routine with pointers to the start of each microroutine located
in the control store RAM. There are sixty-four 10-bit words of memory in the MRAM.
During normal operation, the instruction register (IR) is the source for MRAM reads.
The MRAM has two components that work togeiher to read and write the proper data
into and out of memory. This device was constructed to support microroutine changes
resulting in microroutine base address reassignment. Bits 31 - 26 of the instruction register
(IR) are connected to the input of the MRAM to indirectly address the memory. The
MRAM is loaded during initialization through ports data_in and address_in. All control,
addressing, and data signals péss through the ports defined by the WPIEG-MH entity

declaration:
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Table 4. Input to Output mé.; ping

| MSL Control | Output Vector |
00 or 11 Incrementer
01 Mapping ROM

| 10 R1 and R2

entity MAPPING_RAM is

port (CHIP_ENABLE_BIT : in M'L7_vector (1 dowanto 0);
IR : in MVL7_vector (5 downto 0);
write_signal : in MVL7;
data_in : in MVL7_vector (9 downto 0);
address_in : in MVL7_vactor (5 downto 0);
MMUX_INPUT: out MVL7_vector (9 downto 0));

end MAPPING_ROM;

The first component operates like the input mux of the control store device. If
data_in_sel(1) is high and data_in_se2(0) is low when the write signal is active, then
the source address sent to the mapping memory is the ada-ess_in vector. The IR is the

effective address sent to the mapping memory under all other conditions. -

The second component acts like the control store RAM. If data_in_sel(1) is high
and data_in_se1(0) is low when the write signal is active, this component performs a

write operation. The data that is sent through the memory buffer register is stored in the

mapping memory for microroutine addressing.

4.6.3 Microsnstruction Multiplezer (MMUX) Component Table 4 describes the rout-
ing of the source vector to the output ports. The MMUX is triggered by the MSL device.
This circuit starts the flow within the DES by sending the address of the next microin-

struction to the microinstruction program counter (MPC).

4.6.4 Microinstruction Program Counter Component This device not only provides
a means of addressing the control store, but also is used to signal a reload by setting the
control store address to zero whenever a RESET occurs. The MPC latches the address
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provided by the MMUX to the control store and the incrementer on the rising edge of the

fourth clock phase. Any changes after the fourth clock phase are reflected on the next clock |

cycle. The RESET signal is used at start up to reset the address sent to the control store
to zero. The RESET signal is active high and is generated by the select generator device
whenever address bit 14 is high. This signal automatically places the DES coprocessor
into the startup simulation state. The output address remains zero until the RESET signal

is inactive.

4.6.5 Incrementer Component This component performs a simple binary increment
of the 10-bit vector and routes the output to the MMUX as one of the three inputs for
possible use as the control store microinstruction address. The incrementer is required to

progress step-by-step through the microcode.

4.6.6 Control Store Design The control store provides 1024 20-bit words of control
store RAM and 32 20-bit words of read-only memory (ROM) to the DES. The control
was designed to provide the run time loading of a wide range of microroutines dependent
on the protocol to be used in the simulation. The ROM is used to load the control store
RAM with the microroutines. The control store was divided functionally into five separate
components to provide modnlarity to the system: the input multiplexer, the chip select
circuitry, the ROM, the control store RAM, and the output multiplexer. Figure 7 shows
the interfaces included in this design. The interface for this component is described in the

control_store entity declaration:

entity control_store is

port(write: in MVL7;
control_sel, address_in: in MVL7_vector (9 downto 0);
data_in_sel: in MVL7_vector (1 downto 0);
data_ip: in MVL7_vector (19 downto 0);
data_out: out MVL7_voctor (19 downto 0));

end controi_store;

: Ll
/. Wiy P
/ R e




T -t ; R v -
] ‘l b L ! :
L SR I Lo

e

rdL BRI R S

Address_in Control_Sel

\'o A{O \10

-
|
1,
5 |
e
i

e Boots
Control - g l Select
Store i i
!

RAM N 1

e

| Control Store Output Mux ]____
z

Output o MIR
(data_out)

Figure 7. Control Store Block Diagram

The write signal is provided by the opcode decoder to enable control memory writes
during initialization. The address_in lines are connected physically to the MBR lines 29
down tb 20. These bits are ﬁsed to specify the address for the microinstruction located in
bits 19 down to 0. The microinstructions loaded into control store RAM pass through the
MBR during the initial load. This process is described in Section 5.2 on the DES microcode.
Table 9 shows the bit layout for an initializatiop vecior. The MPC is responsible for
selecting the next word to be read via the control_sel lines. The data_in_sel lines are
used to chip select the control store RAM during a write. The data_in port is connected
to lines 19 down to 0 of the MBR as stated above. The data_out port served as the input
to the MIR to control the DES architecture. -

4.6.6.1 Input Muz The input mux determines the source address for the con-
trol store RAM read or write. If the write signal is high and both bits of the data_in_sel

vector are high, the source address is the address_in lines from the MBR; otherwise, the
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control_sel lines are the source. The control_sel lines are never the source for a control

store memory write.

entity control_mux is

prrt(write : in MVLT;
data_chip_sel: in MVL7_vector (1 downto 0);
control_sel, addr_in: in MVL7_vector (9 downto 0);
effective_addr : out MVL7_vector (9 downto 0) );

end control_mux;

The effective_addr signal is driven by the source as determined above. This signal
changes whenever either of the input addresses changed; therefore, stable a,ddrésses are
required unfil the first clock pulse when the microinstruction is latched into the MIR.
Both of these addresses were designed to be stable for at least that period.

4.6.6.2 Chip Select Circuitry The chip select circuit is responsible for pro-
viding a mem_enable and CS_mux signals to the memory components and the output
mux. The memory components use the mem_enable signal and the output mux uses the

CS_mux signal. .

~entity chip.sel is

port(write : in MVL7;
control_sel: in MVL7_vector (9 downto 0);
CS_mux, mem_enable : out MVL7 );

end chip.sel;
The control store RAM is enabled by a high signal on the mem_enable line. The
ROM is triggered by either a high or low traasition of the mem_enable line. If CS_mux is

high, then the control store RAM is the source of the next microinstruction; otherwise,

the ROM output is provided to the MIR as the next microinstruction.

43




4.6.6.83 Read-Only Memory The ROM is a bootstrap routine used to load

the control store RAM during the initial load prior to the simulation initialization. There
are 32 20-bit words stored in the memory. Only five bits are required for addressing this

memory because there are only 32 words of memory.

4.6.6.4 Control Store RAM The writeable control store memory contains the

routines responsible for supporting various algorithms through the implementation of the

four SPECTRUM functions in microcode. The interface for this component occurs through

the entity declaration identified by the control_mem entity:

entity control_menm is

port{vwrite, mem_enable : in MVL7;
data_chip_sel : in MVL7_vector (1 dowato 0);
addr_sel : in MVL7_vector (9 downto 0);
data_in : in MVL7_vector (19 downto 0);
data-oujt: out MVL7_vector (19 downto 0));

end control_ma;n;
!

The mem-ezjxablo signal has to be high for the memory to perform a read or wrife
of a memory worfd. When the data_.chip_sel bits are both high, the DES was identified
for a write duriné the initial load. A write occurs whenever these two conditions are true
and the write sigha.l is high. A read occurs whenever these two conditions are true and
the write signal is low. During a read or write, the address is provided on the addr_sel
lines. During a write, the data is provided through the data_in port. All output data is

directed to the output mux via the data_out port.

4.6.6.5 Control Store Output This cc:iponent is a simple 2-to-1 mux. The
source for the output of the mux is selected from the read-only control stcre input vector
and the writeable control memory vector. The interface to the chip select, memories, and

the MIR are defined by the ports of the control_store_out entity declaration:




entity control_store.out is ' ‘ P

port(chip_sel: in MVL7; !
control_store_word, hard_wired_word: in MVL7_vector (19 downto 0); \\
out_to_MI} : out MVL7_vector (19 downto 0));

g

Y

end control_store_sut;

If the éhip_sel signal is high, then the output receives the read-only word; otherwise,
the output receives the writeable control store memory word. This process is triggered by
a change in any of the inputs, therefore, the input should be stable prior to and during the
first clock pulse. The output of this component provides the input to the MIR.

4.6.7 Microinstruction Register This circuit provides a me@s of holding the se-
lected microinstruction constant throughout a given clock cycle. The MIR is designed as
a simple register with a data enable and a strobe pin. The input vector to this component
is provided by the control store component. The output vector is broken down into the
following three vectors: eight bits to the opcode decoder for control signal generation, six
bits to the R1 mux which is used to select the input for PATH_A of the internal DES bus,
and six bits to the R2 mux which is used to select the input for PATH_B or. the rising edge
of the first clock phase and remains latched until the next rising edge of the first phase.

4.6.8 DES Opcode Decoder This component §rovides most of the control signals
necessary to enable proper interaction of the subcomponents within the DES architecture.
This component also controls the major components outside of the DES coprocessor which
includes the RAM, CAM, PARIO, adjacent RAM, status register, and the interrupt reg-
ister. A list of all the microinstructions supported by the opcode decoder are included in
Appendix C. The DES opcode decoder interfaces to the DES architecture through the
OPCODE_DECODER entity declaration:
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entity OPCODE_DECODER is

port(opcode_from_MIR : in MVL7_vector (7 downto 0);
MSL_control : out MVL7_vector (3 downto 0);
ALU_control : out MVL7_vector (2 downto 0);
NZ_control : out MVL7; ’
SHIFTER_control : out MVL7_vector (2 downto 0);

" MBR_control : out MVL7_vector (1 downto 0); :
MAR_control : out MVL7; _ :
RIMUX_control : out MVL7_vector (1 downto 0);
R2MUX_control : out MVL7_vector (1 downto 0);
AND_LATCH_control : out MVL7;

RAM_control : out MVL7_vector (1 downto 0);
RAM_SEL_control : out MVL7_vector (1 downto 0);
AMUX_control : out MVL7;

CONTROL_STORE_control : out MVL7;

CAM_control : out MVL7_vector (2 to 7);
CAM_READ_control : out MVL7;

ADJ_RAM_control : out MVL7_vector (1 downto 0);
INTR_control : out MVL7; _ '
READ_LOCAL_control : out MVL7;
WRITE_LOCAL_control : out MVL7;

ERROR_control : out MVL7;

READY_control : out MVL7;

STATUS_control : out MVL7;
PARIO_STROBE_control : out MVL7;
PARIO_MODE_control : out MVL7;
PARIO_CLEAR_control : out MVL7);

end OPCODE_DECODER;

The opcode decoder can be implemented with a simple gate array. The input control,

opcode_from_MIR, received from the MIR signals each of the outputs to a predetermined

state. The output control signals are discussed in detail within each of the subcomponent

descriptions.

4.6.9 R1/R2 Muz Components These components were specifically designed to
provide direct access to the special-purpose registers containing the base address pointers
and status registers for the LPs. These components provide the source to the R1 and
R2 decoders, respectively. The accumulator (ACC) contains the LP number for a given
opcode and is used to select the correct register. Only five bits of the ACC are connected
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to the multiplexer. The rerha.iring bit is sent by the opcode decoder to select the base
pointer or the status register. If the control bit is low, then the base pointer is selected. If
the control bit is high, the status register is selected. Figure 8 shows the complete layout
of the registers within the DES.

4.6.10 R1 and R2 Decoder Components Since the DES was designed using a verti-
cal microcode approach, these two decoder components were required to decode the register
addresses for the general /special-purpose register (GPR) bank. These components provide
the address of the GPR to be strobed onto the two internal data paths of the DES copro-
cessor. These circuikts are triggered by any change in the respective decode inputs. The
row and column addresses are routed to the GPR register bank. The output of the R1
decoder is also routed to the “AND” latch. The row and column vector are produced with
an active low bit in the selected row or column. Eight bits of row and column address
produce 64 combinations of addresses. An active low in a row and column selects the

proper word. A description of the use of these input vectors is provided in Section 4.6.12.

4.6.11 *“AND” Latch Component The “AND” latch was also required due the ver-

tical nature of this von Neumann architecture. This component provides the destination

address to the GPR register bank. This circuit triggers the row and column addresses to

the GPR register bank on the rising edge of the fourth clock pulse. If the control bit from
the DES opcode decoder is high, the GPRs perform a write to the destination register. If
the control bit is low, the row and column vectors are set to all high signals. This setting

effectively disables the destination write process.

4.6.12 General/Special-Purpose Register Bank This register bank provides the DES
with 64 registers that are 32 bits wide. These registers are addressed by the R1 decoder,
R2 decoder, and the “AND” latch. The R1 and R2 decoders provide addresses for reads
onto the appropriate data paths. The “AND” latch provides a destination address for the
GPR register bank. The GPR bank of registers is arranged in a 8 X 8 square. Figure 8

provides the register names and an overall view of the lay out of the registers.
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B8x8 Register Bank)
(Columns)
0 1 2 3 4 6 7
0 | Base | Base | Base | Base | Base | Base | Base | Base
1 | Base | Base | Base | Base | Base | Base | Base | Base
2 | Base | Base | Base | Base
g 3 TO/LP
@ 4 |Status [Status [Status (Status [Status |Status |Status [Status
5 |Status |Status |Status [Status |Status |Status [Status [Status
YY) ’4 XL FrOm
6 |Status |{Status [Status |Status 0 1 1 Mask
TO/LP |Arcs_In

Figure 8. General/Special-Purpose Register Configuration




The register numbers are calculated by the (rownumbers8)+columnnumber formula.
The row and column number are determined by the low bit in the row and column vector,

respectively. The GPRs have the initial values listed in Table 5.

All of the registers are writeable. The registers are loaded during the bootstrap ROM
routine along with the control store and the MRAM. Register 55 provides a mask to be
used in determining the from field identity. Register 59 is also a mask register, but it is
used to &etermine the destination LP’s identity. Register 60 is the ARCS_IN_STATUS mask
used to determine if an .event is ready for processing and is also used to détermine the
count of operands following a given opcode. The use of all these registers will be seen in

great detail in Section 5.2 on the DES microcode.

4.6.13 PATH “A” Latch Unit The only function of this unit is to latch the input
from the GPRs to the multiplexer for the “A” internal data path (AMUX) on the rising
edge of the second clock phase and hold the lines stable until the next clock cycle. This

component requires no control from the DES opcode decoder.

4-6.14 PATH “B” Latch Unit This unit is designed to operate like a standard latch.
The input data is continually read until the second clock phase. The rising edge of the
second clock phase triggers the data through to the output ports and holds the data stable
until the next clock cycle. This latch routes all 32 bits to the DES Arithmetic Logic Unit
(ALU) and the lower order 12 bits to the Memory Address Register (MAR).

4.6.15 Memory B:ffer Register (MBR) Component Tha MER provides a bi-directional

flow of data between the local data bus and the internal DES coprocessor. This register
is used heavily during the simulation startup routine. There are separate read and write
signals generated by the DES opcode decoder to select the direction of data flow. If the
read signal is active, then the MBR is in the input state and reads the data off of the local
data bus and routes it to the AMUX on the rising edge of the fourth clock pulse. If the
write line is active, then the MBR transfers the data vector, shifter_DATA, to the local
data bus on the rising edge of the fourth clock pulse.
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Table 5. GPR Register Original Contents

[ Register Number

Start Value

Logical Name |

00000000000000000000000000010111

LP1 Base Ptr

00000000000000000000000000101110

LP2 Base Ptr

00000000000000000000000001000101

LP3 Base Ptr

00000000000000000000000001011100

LP4 Base Ptr .

00000000000000000000000001110011

LP5 Base Ptr

00000000000000000000000010001010

LP6 Base Ptr

000000000000000000000C0010100001

LP7 Base Pir

00000000000000000000000012111000

LP8 Base Ptr

00000000000000000000000011001111

LP9 Base Ptr

000000000000000000000060121100110

LP10 Base Pir

00000000000000000000000011111101

LP11 Base Pir

00000000000000000000000100010100

LP12 Base Ptr

00000000000000000000000100101011

LP13 Base Ptr

00000000000000000000000101000010

LP14 Base Ptr

00000000000000000000000101011001

LP15 Base Ptr

00000000000000000000000101110000

LP16 Base Ptr

00000000000000000000000110000111

LP17 Base Ptr

Lod el B Dl L
mqamhaﬁzgomqawhwn:l

00000000000000000000000110011110

LP18 Base Ptr

LP19 Base Ptr

19 00000000000000000000000110110101
32 to 51 00000000000000000000000000000000 { LP Status Regs
52 00000000000000000000000000000000 | Constant “0”
53 00000000000000000000000000000001 | Constant “+1”
54 11111111111111111111111111111111 | Constant “-1”
55 00000000000000111111110000000000 | FROM_MASK
56 000000060000000000000000000060000 { Instruction Reg
57 00003000000000000060000000000000 | Accumulator
59 00000011111111000000000000000000 | TO_LP_MASK
60 000000006000000000000001111111111 | ARCS_STATUS_MASK
63 00000006000000000000000000000000 | Count Reg
Others 00000000000000000000000000000000
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Table 6. ALU Opeiation

[ ALU Control | Operation |

000 Addition

| 001 Logical AND
010 Logical XOR
011 Logical OR
Else Pass Through

4.6.16 Memory Address Register Component The MAR unit was designed to ad-
dress the DES RAM unit when performing read and write operations. The rising edge of
the third clock phase strobes the address through to the output ports, but the source input
only changes when the DES opcode decoder control signal is high at any time during the
cock cycle. This enhancement allows the holding of a memory address for multiple cycles,

when necessary.

4.6.17 Path “A” Multiplezer Component This circuit was designed when the re-
quirement for having multiple inputs for the same input into the ALU had to be resolved.
The inputs are each 32 bits wide and the output is a 32-bit vector. The DES opcode
decoder control signal determines the :urce vector to drive the output lines. If t_hé control

signa] is low, the source vector is the MBR,; otherwise, the source vector is the “A” latch.

4.6.18 Arithmetic Logic Unit The ALU is responsible for all logical and mathemat-
ical operations required in the DES. This circuitry interfaces with two 32-bit input data
paths and outputs one 32-bit vector to the shifter. This circuit also sets the zero latch bit
high if the result of the operation equals zero; otherwise, the zero latch bit is set to a low

value.

The DES opcode decoder 3-bit contrcl vector deterinines the operation to be per-
formed by the ALU. Table 6 lists the control vectors and the related operation. All oper-
ations generate a high or low signal on the zero latch output signal. All of the operations

were included only after their use was validated when writing the microcode.
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Table 7. SHIFTER Operation

[ SEIFTER Control | Operation |
000 No Shift
001 | Left SIift 1 bit
010 Right Shift 1 bit
011 Left Shift 8 bits
100 Right Shift 8 bits
Else No Shift

4.6.19 Zero Logic Latch This circuit is responsible for latching the zero latch bit
from the ALU to the MSL component. The ALU signal is produced after every operation.
A low signal is produced if the output of the ALU is not equal to zero and a high signal if
the output equals zero. The DES opcode decoder control signal is responsible for latching
the data into the MSL component. This control signal is generﬁted by the opcode decoder
every clock cycle to force the Z_LOGIC unit to update the zero flag state parameter in the

MSL. The MSL requires this information to correctly execute the microinstructions.

4.6.20 Shifter Component The shifter unit performs four different shifts a.nd a pass
through operation. The five fﬁnctions of the SHIFTER are: no shift, left shift one bit, right
shift one bit, left shift eight bits, and right shift eight bits. The shifts are used throughout
the microcode to either align vectors to be masked or to format output messages. The

control vector breakout for shifter operation can be easily seeh in Table 7.

4.6.21 Micro-Sequence Logic Component This circuitry is the primary controller
used to determine the present state and the next state of the DES coprocessor. This
unit is necessary to progress through the microcode correctly. This component interfaces
with most of the state parameters required to determine the next logical path to follow.b
The opcode decoder controls the parameter checks to perform and the MSL provides the
control to the MMUX depending on the parameter values found. The state parameters
and control ports are defined in the following MSL eatity declaration:

52



entity MSL is

port(CAM_MATCH: in MVL7;
CAM_COMPLETE : in MVL7;
Z_flag: in MVLT;
opcode_operand: in MVL7;
READ_LOCAL_WRITE_REMOTE: in MVL7;
WRITE_LOCAL_READ_REMOTE: in MVL7;
MSL_control: in MVL7_vector (3 downto 0);
MMUX_control: out MVL7_vector (1 downto 0) );

end MSL;

The CAM_MATCH, CAM_COMPLETE, Z_f1ag, opcode_operand, READ_LOCAL WRITE_REMOTE,

and WRITE_LOCAL_READ_REMOTE signals are the state parameters of the DES. The CAM
provides the first two signals at the coxhpletion of each operation. The zero logic register
provides the Z_flag each cycle. The details of these signals follows in the CAM, Zero
Logic, and Status Word sections, respectively.

The description of the behavior of the MSL is described in Table 8 which provides

an if-then type construct listing of its internal operation.

4.7 Summary

The DES coprocessor was designed with general-purpose simulation support as the
primary design objective. The Chandy-Misra paradigm is implemented in microcode to
provide a base fPr DES simulation tests. The DES is designed to potentially support
many paradigms. The CARWASH simulation was used to provide test vectors to test the

microcode routiml,‘s and the DES interoperation.
1

This DES d\e;sign takes the form of a standard von Neumann architecture. Every
component is manipulated with control signals. The opcods decoder is the primary source

of the control lines for the external and internal DES components.

The time delays built into the structural VHDL code were determined by finding the

propagation delays using HSPICE. All of the propagation delays for the gates used in the
DES design were obtained with HSPICE runs.
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Table 8. MSL Input to Output Mapping

{ MSL Control | Parameter Value

| MMUX Control |

0000 If opcode.operand = 0 Select R1 and R2 |
0000 If opcode_operana =1 Select Incrementer
0001 If opcode_operand = 0 Select R1 and R2
and READ.LOCAL =1
0001 Eise Select Incrementer
0010 It Zflag=1 Select R1 and R2
10010 If Zflag=0 Select Incrementer
0011 If not READ.LOCAL =1 Select R1 and R2
0011 Else Select Incrementer
0100 Tf not WRITELOCAL=1 Select R1 and R2
0100 Else Select Incrementer
0101 If CAMMATCH=1 Select R1 and R2
0101 Else Select Incrementer
0110 If CAM_COMPLETE =1 Select R1 and R2
0110 Else ‘ Select Incrementer
0111 JUMP Select R1 and R2
1000 JUMP Select Mapping ROM
11001 If not CAMMATCH=1 Select R1 and R2
1001 Else Select Incrementer
1010 If not CAM_COMPLETE =1 | Select R1 and R2
1010 Else Select Incrementer
1011 If not CAM_COMPLETE =1 | Select R1 and R2
‘ and not CAMMATCH =1
011 FElse Select Incrementer
Else Select Incrementer
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. V. Detailed Microcode Design

5.1 Introduction

The microcode must be written to take full advantage of all the functionality built
into the hardware coprocessor. The hardware developed to achieve speedup over a wide
range of simulations as well as simulation protocols is of no use without the effective
and efficient development of microcode to control the entire architecture. A step-by-step
process was developed from the structural decomposition of the behavioral VHDL code
written by Taylor [21]. The formats for the opcodes and operands is also included in this

chapter to clarify the content of a given data packet.

An example follows the description of the microcode in an attempt to clarify the
interaction of the microcode with the RAM, CAM, and LP status registers. The RAM,
CAM, and status registers are the primary components altered by the microcode. Only

snapshots of the hardware devices are included.

5.2 DES Microcode

The microcode is written to implement the five functions of the SPECTRUM testbed
while providing direct support for the Chandy-Misra paradigm. As mentioned earlier, the
Advance Time function is included in the Get Event routine; therefore, the five functions
are implemented as four microroutines located in the control store RAM. Addresses of the
starting address of each routine is stored in the mapping ROM for use by the fetch/dacode
routine. There are five routines located in the control store including the fetch/decode
routine. Two additional routines, Startup Simulation and Fetch/Decode, were included to
load the microcode into the control store and process the opcodes, respectively. All of
the microcode was written using the 132 microcommands located in Appendix C. The
algorithms in Appendix A were followed to write the microcode. Table 9 displays the

layout of the fields and their meaning.

5.2.1 Startup Simulation Routine The control store ROM code is designed to load
ail of the microcode routines into the control store’s RAM, initialize the CAM, initialize
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Table 9. Load Vector Format

LBits Data Vectc Vield

[31 — 30 | Chip Select

29 — 20 | Addresc for Control Store
25 — 20 | Address for Mapping RAM
19 — 00 | Data for Control Store

09 - 00 | Data for Mapping RAM

the genera.l/sbecia.l-purpose registers, and load the MRAM with the indirect addresses of
each microcode routine. The RESET signal is designed to autoratically set the address from
the MPC to the control store to address “0.” Once this code is called, an opcode with a
value of “0” is received tc;) start the loading of the subroutines. Loading continues until
another ospcode is received with a value of “0.” The ROM microinstructions are contained

in 32 20-bit words of control. Once this process is completed, the fetch/decode routine is

called to begin normal operation.

5.2.2 Fetch/Decode Routine This microcode is designed to wait for an incoming
opcode, load registers‘ that are used by all of the subroutines, and call the desired subrou-
tine. The opcode is stored in the accumulator because bits 25 down to 18 of the opcode
contain the TO LP number. This 8-bit field is used as an input to the R1 and R2 muxes to

access t1e base pointers and status registers. The following algorithm provides the basic

flow of the Fetch/Decode routine.

1. Check for Opcode, loop if not.

2. Strobe data in from the Parallel Input Device.

3. Store the opcode in the IR (Register 56).

4. Load the operand count into the count register (Register 63).
5. Load the TO LP field into register 27.

6. Store the opcode in the accumulator (Register 57).

7. Jump to the address from the MRAM.
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5.2.3 Initiglize Simulation This routine is designed to load all of the LP spéciﬁc

information into the RAM, set up the status registers for each LP, send null messages to
each output arc, and reserve a CAM word for each input arc. A CAM word is reserved
for every input arc to ensure that at least one message can be stored in the CAM for each
input arc. The opcode for this routine is 000001, This routine must be sent to the DES

for each LP involved in a given simulation.

5.2.4 Post Message This routine processes all incoming messages for the host node.
In general, the Post Message routine stores the event in the CAM, stores the memory
pointer in the adjacent RAM, and updates the LP;s status register. This routine is re-
sponsible for signa.ling a CAM_FULL whenever the CAM is full during the CAM write process.
The opcode used to signal a Post Message is 000010.

5.2.5 Get Event The Get Event routine determines if there is an event ready for
the LP spedﬁed in the opcode message sent by the host system, retrieves the event, sends
the message to the host for processing, updates the LP’s status register, and updates the
simulation time for the specified LP. This function is called whenever the DES returns a
CAM_FULL to the host node to free up CAM space or when an event is ready to be processed.
The CAM front-end driver is used by this routine to find the event with the minimum time
tag and also to search for another event matching the TO and FROM information of the
event just processed. This search function is used to determine if there is another event
on the same input arc. If the CAM returns a CAM_MATCH, then there is another event on

the subject input arc. The opcode used to signal a Get Event is 000011.

5.2.6 Post Event The Post Event routine is only used to send null messages to all
output arcs except the arc receiving the real message. The output arcs are retrieved and
compared to the arc encoded in the opcode packet to determine if a null message should
be formatted and sent to the host for processing. The opcode used to signal a Post Event

is 000100.

5.2.7 Opcode Format Table 10 shows the opcodes used for each routine. All of the
32 bits are not always of use to the DES. The opcode field is stored in the IR to provide
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Table 10. Opcode Formats

[ Instruction | Bits | Opcode Field |
["All Instructions : 31~ 26 | OPCODE Number
25— 23 | TO_NODE
, 22-18 | TO_LP

| Post Message and Event 17 — 15 | FROM_NODE

Init_Sim and Get Event 17~ 15 | Unused

Post Message and Event 14 — 10 | FROM_LP

Init_Sim and Get Event 14 - 10 | Unused

Init_Sim and Post Message | 09 — 00 | Operand Count

Get and Post Event 09 — 00 | Unused

the address for the MRAM. The IR is used by thevfetch/decode routine to jump to the

corresponding routine in the microcode.

5.2.8 Operand Format The Get Event routine is the only instruction that does not
require any onerands to complete. The Post Message routine requires two operands unless
the event is a null message. The TIME_TAG and the MEM_PTR are the only two operands
that are expected by the Post Message routine. Both operands use all 32 bits of the data
vector. The operand count is used to determine when the MEM_PTR should be set to “0” and
when the MEM_PTR operand follows the TIME_TAG. The Post Event routine only requires
one operand, the TIME_TAG, and all 32 bits of the data vector are used. Table 11 shows

the operand format used for the initialize simulation routine.

5.8 Microcode Routine Ezecution Ezamples

The execution of the microcode routines primarily causes changes in the RAM, CAM,
and LP status registers. Table 1 shows the configuration of each partition in RAM. The
meaning of each field within the CAM is described in Table 3. A CAM word is valid when
the “V” column as seen in Figure 9 is set to “V” and invalid when set to “N”. The status
register is initially set to contain a “0” for each input arc starting with a “0” in the least

significant bit. The following example shows the effects on the RAM, CAM, and status
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Table 11. Initialize Simulation Operands

| Operand Number | Bits | Opcode Field |
(1 31 — 18 | Unused
17-15 | I/0_ARC_NODE
14 —-10 | I/0_ARC_LP
09 ~ 00 | Unused
2 31~ 16 | #_ARCS_OUT
15—~ 00 | #_ARCS_IN
3 31 -00 | LP_DELAY
4 31-00 | SIM_TIME
5 31 — 18 | Unused
17— 00 | TIME_TAG
6 31 — 00 | MEM_PTR

registers after each routine is executed. The sequence begins with the Initialize Simulation

opcode and progresses through the opcodes to the Post Event opcode.

Figure 9 shows the RAM, CAM, and status register contents after execution of the
Initialize Simulation opcode sent for LP 5. The RAM has been initialized, an arc has been
reserved in the CAM for each input arc, and the status register contains a “00” in the

lowest order two bits.

Once all of the kardware devices have been initialized, the DES should start receiving
messages to store in the CAM. Figure 10 shows the new memory contents after a message
is received for LP 5. The message has been stored in the first word of the CAM. The
respective CAM word has been set to the valid state. Since a message was received on the

first input arc, bit “0” of the status register was updated to a “1.”

Assuming three more messages have been received, what do the RAM, CAM, and
status register contain? Figure 11 shows that all of the words have been stored in the
CAM and their respective valid bits set. Every input arc for LP 5 has an event present in
the CAM; therefore, the status bits for the input arcs are set to all 1s.

Now that there is an event ready for LP 5, Figure 12 shows the results of a Get Event
opcode for LP 5. The RAM has been changed to reflect the new safe time of “6.” The

- 59




CAM
V TOLP FROMInfo R Time Tag
RAM (1) (5 bits) (8bits) (1) (17 bits)
N 5 5n1 1 XXX
N 4 XXXXX
NODE/LP : 477 d 2 !
ODE/LP - 4/2 N[ 31 XX |1 XXX
NODE/LP : 5/1 N 31 X/X 1 XXXXX
#_1/0_Arcs : 12 ; X .
_Sim_Time : 0 g | ’ ’ |
LP Delay : 4 k i i i i
N 31 X/X 1 XXXXX
N 31 X/X 1 XXXXX
N 31 X/X 1 XXXXX
LP Status Register

00000000000000000000001111111100

Figure 9. Initialize Simulation for LP 5

00000000000000000000001111111101

Figure 10. The first Post Message for LP 5
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CAM
V TOLP FROMInfo R Time Tag
RAM ~ (1) (5 bits) (8 bits) (1) (17 bits)
v 5 5N 1 7
~NODELLP 477 N 5 42 1 XXXXX
NODE/LP : 42 NI 31 XX 1] XXXXX
NODE/LP : 5/1 N| 31 XX |1 XXX
#_1/0_Arcs : 172 - -
im_Time : i { t ’ i
LP_Delay : 4 ’ i i ; i
i ! i i i
N 31 XX 1 XXXXX
N 31 XX 1 XXXXX
N 31 X/X 1 XXXXX
LP Status Register




CAM
V TOLP FROMInfo R Time Tag
RAM (1) (5 bits) (8 bits) (1) (17 bits)
v 5 sn 1 7
NODE/LP - 477 Vi s n_ |1 6
NODE/LP :4/2 N 14 75 ) XXXXX
NODE/LP : 5/1
¥ 10 _Arcs ~ 173 N 14 6/3 1 xXXxx
Sim_Time : 0 | i l i [
LP _Delay: 4 § | ; ; !
i ] i i i
' 1 H H H
\ 5 4R 0 9
v 5 5/1 0 14
N 31 X/X 1 XXXXX
LP Status Register

00000000000000000000001111111111

Figure 11. The Fourth Post Message for LP 5

time units are not of concern at this level. The CAM word with the smallest time tag has
been retrieved and invalidated. The status register has not been changed because there is

still an event on the input arc in the CAM.

Figure 13 shows the results of two Get Eventsin one step. All three of the components
have been modified. The simulation time in the RAM device has been updated to “9,”
because the time tag of the last message retrieved contained a time tag of “9.” Figure 13

shows the results of two CAM find minimum time tag commands. Since the “R” bit of the

CAM is still set to a “1” for the input ares initially reserved, the arcs remain reserved for

future CAM writes.

The RAM, CAM, and status register are not updated during a Post Event opcode,
but the information within the RAM is retrieved for processing the opcode. A null message
must be formatted and sent to every outpuf arc not receiving the real message. Figure 13
shows the location of the output arcs that must be retrieved. There is only one output

arc for LP 5, but any given LP could have multiple output arcs. The #_1/0_Arcs field
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CAM
V TOLP FROMInfo R Time_Tag

RAM (1). (5 bits) (8 bits) (1) (17 bits)
v 5 N 1 7
NODE/LP : 4/7 N 5 an 1 6
NODE/LP : 42 N XXXXX
NODE/LP : 5/1 14 sl 1
# 10 _Arcs . 12 N 14 6/3 1 XXXxXx
1m_Time : H i i H !
LP_Delay : 4 l i l
| mis
A 5 42 0 9
v 5 5/1 0 14
N 31 X/X 1 XXXXX

LP Status Register

00000000000000000000001111111111

Figure 12. The First Get Event for LP 5

CAM
V TOLP FROMInfo R Time Tag
RAM (1) (5 bits) (8 bits) (1) (17 bits)
N 5 /1 1 7
NODE/LP : 47 N 5 an 1 6
NODE/LP . 4/2
NODEILP -3/1 N[ 14 /] 1] 00X
#_1/0_Arcs : 112 NI 14 3 1] xooxx
im_Time : a I ] l i
LP Delay : 4 | . , |
| | i | |
i H H H H
N[ s 7 o 9
V| s 5/1 0 14
N[ 31 XX [1] xoo0x
LP Status Register
00000000000000000000001111111101

Figure 13. The First Get Event for LP §
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would also be retrieved to locate the first output arc and to supply the count of arcs to be

processed.

5.4 Summary

This chapter shows the interoperation of the hardware and microcode. The SPEC-
TRUM filters were decomposed and routines were designed to support the Chandy-Misra
protocol. Two DES routines were written to support the four filter routines described in
this chapter. An example of execution of a series of opcodes and the related changes to
the hardware components were detailed in this chapter to clarify the interoperation of the

hardware and microcode.

The SPECTRUM filter routines designed for the lDES architecture are loaded into the
control store during the Startup Simulation process. Indirect addresses are used to jump
to the correct microroutines. The microinstructions provide the control flow required to

process events through the DES. ‘

|
|
|
|
r
1
|
|
|
1
i
i
i
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VI. DES Coprocessor Desijn Test

6.1 Introduction

A mixture of a behavioral and structural description of the DES copi'ocessor was
implemented using Synopsys VHDL. All of the behavioral descriptions were written de-
scribing the behavior of low-level components, but not down to the gate level. A reference

to the source code listing is located in Appendix D.

- Thorough interface testing between the DES and the CPU was not possible because a
working description of the Intel Hypercube {PSC/2 was not available. The interfaces were
tested using 80386 signal standards as described in Volume II of Intel’s Microprocessor
Manual [9:5-290-5-312]. The DES was considered an I/O device with reference to the CPU,
therefore, the appropriate M_I0#* signal value was used to designate an 1/O signé.l. The
port mapping between the DES and the CPU is located in the top-level DES_SYSTEM.vhd
file, located in Appendix D. .

A very high-level VHDL test bench was designed to model the cha.racteristics ofa
Hypercube node. The technique used to gather the test data for the DES design test plan

is also discussed in this chapter. The final section contains the actual test cases and the

results of the tests.

6.2 Design Test Methodology

The DES coprocesé&f ‘design was implemented in a modular fashion. Sygfem testing
was divided into hardware and microcode testing. Individual components were tested and
integrated with other DES components to form Iogi/cal groupingé. This approach was used
until all high-level units were designed and tested. The hardware integration had to be
completed prior to system software integration.

The logical grouping approach to system tésting resulted in eight high-level functional
units. The resulting functional units are: the DES coprocessor, a parallel I/O port, a

CAM, a RAM, an Interrupt register, a Status register, an Opcode/Operand latch, and the
DES select generator. The DES coprocessor was further divided into 23 subcomponents

64



as described in Chapter IV. A whitebox test approach was followed for each of these
subcomponents. The ROM routine and the Initiglize Simulation routines were used to
test the internal structure of the DES coprocessor. The parallel I/O device, the Status
register, and the Opcode/Operand latch had to be integrated into the design prior to
testing the control store and MRAM load process. All of the input and output ports were
checked for validity during this process'. »

The integration testing of thé parallel I/O device with the DES coprocessor was
performed during the initial microcode load. The transfer of data into the DES structure
was verified during the initial load of the ﬁlicrocode by listing the control store RAM after
loading was completed. The parallel I/O ports were traced to ensure data integrity was

maintained. The status bits and opcode/operand bit were checked for accuracy.

The next step was to integrate the RAM, CAM, and an interrupt register into the
design to complete the DES structure. Once all of these components were implemented,

the interrupt, error and event execution testing began.

Basically, the following four areas provide the testing coverage required to effectively
test the implementation of the DES: control store RAM and MRAM loading, interrupt
processing, error processing, and event processing. The following sections will detail the

tests conducted to meet requirements.

6.3 ‘DE‘S Test Bench Design

This process is designed to emulate the 80386 processor at a high level. The signals
generated by this design were also designed vo match the signal assignments described in the
Microprocessor Manual [9:5-290~5-312). A more detailed description of the interface follows
in Section 6.4. The test bench was responsible for loading the DES Control Store RAM
and MRAM as described in Chapter IV. All of the signals generated in this architecture
can be found in the DES_TEST_BENCH entity declaration:
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entity DES_TEST_BENCH is
pert (INTR : in DotX;

CLK2 : out MVL7;
SYSTEM_DATA_BUS : inout BusX (31 downto 0);
SYSTEM_ADDRESS : out MVL7_vector (31 downto 2);
W_R : out MVL7;
M IO 3 out MVL7;
INTA : out MVL7;
ADS : out MVL7;
RESET : out MVL7 );

end DES_TEST_BENCH;

The CLK2 signal is generated by the MASTER_CLOCK process located within the
des_test_bench.vhd file. All of the remaining I/O signals are generated or acted upon
in the TRANSFER_DATA process. The signals generated by this process are triggered on the
rising edge of CLK2. The DES_TEST algorithm follows the steps in Table 12.

Table 12. Test Bench Algorithm
| Step | Instruction '
1 Load Control Store ‘
2 Load Mapping RAM
3 Retrieve OPCODE
4 Send OPCODE
5 Send Operands
6 Process Errors and Interrupts
7 Loop to Step 3 Until END OF FILE

The test bench was created one part at a time along with the DES coprocessor and
was designed step by step in line with Table 12. As the DES coprocessor was upgraded,
the test bench was upgraded to test the functionality of the coprocessor. The errors and
interrupts were simply read and handled by the test bench. Checking for proper error and
interrupt codes was not performed. Assertion statements were used to ensure the proper
path was followed for each opcode.
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6.4 DES Test Data

Test data from an actua! Intel Hypercube run was gathered to test the DES for
proper functionality using realistic data. Each of the runs produced a log file for each LP.
The MAXTIME attribute in the application.h file can be set to the total runtime desired
for a simulation. The test data was gathered using 8 LPs running on a single node of the
Intel Hypercube fPSC2. These files were decoded and translated into a usable format for
the test bench.

Test data for the design was gathered from a 25-second run of the “NULLWASH”
simulation developed by Van Horn [22]. The Hypercube was completely unloaded when
the test runs were conducted to ensure realistic filter delays were obtained. The DEBUG
attribute within the u_null_mess.c file was turned on to print all event information for |
each LP. This data was used to test each individual routine of the DES coprocessor. The

test data was converted into a usable format for the test bench.

Simulation average processi.g times per SPECTRUM filter was gathered from the
“NULLWASH” simulation with a run time of 1000 seconds to ensure stable and accurate
results. This data was used for comparison with the hardware implementation execution
times to determine speedup. The DEBUG attribute was turned off in the u_null_mess.c
file to turn off filter outputs. The information gathered with this configuration was the
total processing time per filter, number of filter calls per filter, and the total processing

time per simulation.

6.5 DES Coprocessor Design Testing

The DES design tests were conducted with the aid of VHDL simulations using the
VHDL simvulation environment and the Synopsys Debugger environment. The following

four subsections contain the details of the testing results.

6.5.1 Control Store and MRAM Load The microcode written to support the Chandy-
Misra protocol was used to test the initial load of the control store RAM and the MRAM.
The microcode vectors were compared to the microcode and MRAM memories by listing

the memories. Some of the decimal microinstructions located in the file that are loaded
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into the control store RAM and MRAM were converted to hexadecimal numbers to allow
a direct comparison with the control store RAM and MRAM. The values were verified to

ensure the DES to host interface and the loading process was working correctly.

6.5.2 Interrupt Routine Testing The interrupt vectors checked in this test process
included the following types: Post Event Message, which is signaled whenevef a null mes-
'sa.ge has been prepared for an output ar: that is not receiving a real message; Get Event
Message, which is signaled whenever an event is ready to be processefdr; and Get Event

Nulls, which is used to signal that a null message was retrieved from the CAM and a null

message is ready for one of the output arcs.

The test bench processed interrupts ﬁsing a loop construct. An assertion statement
was used within the loop construct to identify the interrupts. The code was traced during
every opcode and vperand to determine the interrupt routine that was selected. The
interrupt register was also used to determine which of the interrupts was signaled by the
DES. All of the interrupt routines are designed in the same manner to reduce coding errors.
The only difference between the interrupt routines is the interrupt vector which selects the
interrupt handler.

The interrupt register is the best source to review for proper interrupt signaling. The
only time this register is active is when the DES has data to pass to the CPU. Testing
of this component was performed by examining the interrupt vector triggered onto the

system data bus during the Initialize Simulation routine. Both steps are recorded in the

following data trace.

142987 NS
M: ACTIVE /DES_SYSTEM/DES_MAP/U6/INTR (value = *1’)
M4: ACTIVE /DES_SYSTEM/DES_MAP/U6/INTR_VECTOR (value = X"FF")
M2: ACTIVE /DES_SYSTEM/DES_MAP/U6/LOCAL_DATA (value = i"rr")
143060 KNS
M1: ACTIVE /DES_SYSTEM/DES_MAP/U6/INTA (value = ’1’)
M2: ACTIVE /DES_SYSTEM/DES_MAP/U6/LOCAL_DATA (value = X"??7")

143062 NS
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M3: ACTIVE /DES_SYSTEM/DES_MAP/U6/VECTOR_T0.386 (value = X"FF")

The signal labeled M4 is the interrupt vector used to signal a Post Event interrupt.
“FF” is the value of the interrupt that is processed during this interrupt. Signal M3 shows
the data appearing on the interrupt outputs 2 ns after the INTA signal is activated. This
interrupt validates the DES interrunt process. The entire system bus was examined to
ensure the system data bus wasn’t floating to a high state which would signal the same

interrupt. The remaining bits of the system bus were low.

' 6.5.8 Error Routine Testing Thae error vectors examined in this process included
the following types: Should Be Operand, which is called whenever an opcode 15 received
by any routine except the Fetch/Decode routine; No Input/Output Arcs, which is executed
whenever an ‘LP has either no input arcs ot no output arcs; Restart Load, which is triggered
whenever the initial loading process does not complete in the correct manner; CAM Full,

~which is selected during the Post Message opcode if the CAM_MATCH flag is inactive during

a CAM write signaling there is not a free CAM word for writing; and CAM Error, which
is triggered during the Get Event opcode if an event is ready for the specified LP, but the
CAM signals that there is not an event in the queue for the LP.

The test bench also processed the errors in a loop construct using an assertion state-
ment to identify when an error occurred. The microinstructions were traced to ensure the
appropriate errof—routines were executed during each test. The error routines are also de-
signed exactly alike to reduce coding problems. Again, the vectors are the only differences
between the error routines. Detailed error tests were also performed late in this research
effort resulting in a limited availability of testing output, but all of the error vectors were

visually checked to ensure functionality.

6.5.4 Event Erecution Testing Event execution testing was performed in a modular
fashion. Since the opcodes were translated from a run of a Intel Hypercube simulation, the
test vectors used for the microcode tests will provide a true test of the hardware. These

opcodes do not guarantee complete functionality, but provide a high level of confidence in
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tke operational integrity of the system. The event execution testing process includes the

parallel I/O device, status register, and microroutine tests.

6.5.4.1 Parallel I/O Componert Testing In this section, test results for this
device are presented showing data on the input and output ports of this device. The proper
port values were examined for accuracy to ensure proper bidirectional opera.tioh. The signal
generator device is responsible for decoding test hench signals into the appropriate chip

selects for the parallel I/O device and the status register.

The following data trace shows the CPU loading the parallel I/O device with an op-
code or operand. The data is loaded into the parallel I/O device whenever the MODE_386
signal is %éctive. This first trace segment shows a data value of “C2167029” being loaded
into the iaarallel 1/0 device. Validation of this fact is seen in the next trace segment that

shows the same data packet on the local data bus.

945 NS

M3: | ACTIVE /DES_SYSTEM/DES_MAP/U3/MODE_386 (value = ’1’)

Mi: | ACTIVE /DES_SYSTEM/DES_MAP/U3/STROBE_386 (value = ’0’)
947 NS

M2: | ACTIVE /DES_SYSTEM/DES_MAP/U3/MODE_DES (value = ’0’)

M:  ACTIVE /DES_SYSTEM/DES_MAP/U3/STROBE_DES (value = ’0’)

M5: | ACTIVE /DES_SYSTEM/DES_MAP/U3/LOCAL_DATA (value = X"77777777"
960 NS | '

M6: | ACTIVE /DES_SYSTEM/DES_MAP/U3/SYSTEM_DATA (value = X"C2167029")

The following data trace shows the data propagated through the parallel I/G device
to the local data bus. Data is triggered onto the locai data bus whenever the STROBE_DES
signal is active. Since the data on the local and system data buses match, the parallel I/O

DES receive portion of the device seems to be working.

1107 NS
M2: ACTIVE /DES_SYSTEM/DES_MAP/U3/MODE_DES (value = ’0’)
M: ACTIVE /DES_SYSTEM/DES_MAP/U3/STROBE_DES (value = ’1?) i
M5: ACTIVE /DES_SYSTEM/DES_MAP/U3/LOCAL_DATA (value = X"7772?7777" R
1109 NS
M5: ACTIVE /DES_SYSTEM/DES_MAP/U3/LOCAL_DATA (value = X"C2167029")
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Next, the DES transmit process was tested to ensure the parallel I/O device works

properly when passing data from the DES to the host processor. The data trace below
shows the data being latched into the parallel I/O device by the MODE_DES active signal.
The data packet “01090401” is latched into the parallel I/O device during this test.

142905 NS

M3: ACTIVE /DES_SYSTEM/DES_MAP/U3/MODE_386 (value = '0°)
Mi: ACTIVE /DES_SYSTEM/DES_MAP/U3/STROBE_386 (value = '0’)
142907 NS
- M2: ACTIVE /DES_SYSTEM/DES_MAP/U3/MODE_DES (value = *1°)
M: ACTIVE /DES_SYSTEM/DES_MAP/U3/STROBE.DES (value = ’0’)
M5: ACTIVE /DES_SYSTEM/DES_MAP/U3/LOCAL_DATA (value = X"01090401")

To ensure the data path works correctly, the data must appear on the system data
bus the next time the STROBE_386 signal is active. The data trace that follows shows the
output from the parallel I/O device onto the system data bus. Since the data on the local

and system data buses match, the PARIO output portion of the device performs correctly.

143145 NS
M3: ACTIVE /DES_SYSTEM/DES_MAP/U3/MODE_386 (value = ’0’)
M1: ACTIVE /DES_SYSTEM/DES_MAP/U3/STROBE_386 (value = ’1’)
143147 NS
M2: ACTIVC /DES_SYSTEM/DES_MAP/U3/MODE_DES (value = ’0’)
M: ACTIVE /DES_SYSTEM/DES_MAP/U3/STROBE_DES (value = ’0’)
M6: ACTIVE /DES_SYSTEM/DES_MAP/U3/SYSTEM_DATA (value = X"01090401")
M5: ACTIVE /DES_SYSTEM/DES_MAP/U2/LOCAL_DATA (value = X"7777777?7"

6.5.4.2 Status Register Component Testing The Status register can be up-
dated by either the DES or the CPU. The configuration of the status register is shown in
Figure 4. The operation of the Status register is described in detail in Section 4.3.2. The
test results gathered show the CPU and DES updating the status word at various times.
The DES and CPU can also update the status word at the same time. If both processors
attempt to update the same bit in the status register, the result is a double toggle which
results in no change to the status register. The value of the STATUS_ to.DES value was

used because the status register contents are directly connected to those signals. Whenever
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the CPU is updating the status word, the WRITE_386 signal and the appropriate bits to
be updated are active. Whenever the DES is updating the status word, the WRITE_DES
signal and the appropriate bits to be updated are active.

The writing and reading of the status word by the CPU was tested first. The following -

‘data trace shows the contents of the status word before and after the update is executed.
The STATUS.TO0_386 port is connected to the lowest four bits of the syétem data bus.
From the data trace, the CPU requested that the lowest order bit be toggled to a low value
and the expected results are found. The WRITE_386 signal selects the write function for
the host system. Signal M10 requests that the WRITE_LOCAL bit be toggled because the
host has just completed reading a data packet from the parallel I/O device.

150360 NS :
M9: ACTIVE /DES_.SYSTEM/DES_MAP/U1/STATUS_TO_DES (value = X"9")
150385 NS
M7: . ACTIVE /DES_SYSTEM/DES_MAP/U1/READ_386 (value = *0*)
M8: ACTIVE /DES_SYSTEM/DES_MAP/U1/WRITE_386 (value = ’1’)
150400 NS
M10: ACTIVE /DES_SYSTEM/DES_MAP/U1/STATUS_T0.386 (value = X"1")
M9: ACTIVE /DES_SYSTEM/DES_MAP/U1/STATUS_TO.DES (value = X"8")

Next, the read function was tested and the following data trace shows the status
transmitted to the CPU when the READ._386 signal is active. The STATUS.T0.386
vector should be the same as the STATUS_TO_DES verior. The vectors mentioned are
equal, therefore, the read function of the status register is working correctly on the host

side.

150400 NS

M9: ACTIVE /DES_SYSTEM/DES_MAP/U1/STATUS_TO_DES (value = X"8")
150425 NS

M7: ACTIVE /DES_SYSTEM/DES_MAP/U1/READ_386 (value = ’1’)

M8: ACTIVE /DES_SYSTEM/DES_MAP/U1/WRITE_386 (value = ’0°’)
150427 KS

M6: ACTIVE /DES_SYSTEM/DES_MAP/U1/WRITE_DES (value = ’0°)

Mi: ACTIVE /DES_SYSTEM/DES_MAP/U1/READY_BIT (value = ’0’)

M2: ACTIVE /DES_SYSTEM/DES_MAP/U1/ERROR_BIT (value = ’0’)
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Ma: ACTIVE /DES_SYSTEM/DES_MAP/U1/WRITE_LOCAL (value = ’0’)
M3: . ACTIVE /DES_SYSTEM/DES_MAP/U1/READ_LOCAL (value = ’0’)
150440 NS ’
M10: ACTIVE /DES_SYSTEM/DES_MAP/U1/STATUS_T0.386 (value = X"8")

Only the write function on the DES side was formally tested because the status
register is directly connected to the MSL in the DES coprocessof and proper functionality
was seen in all of the traces. ’Whenever the WRITE_DES signal is active, the DES is
performing a write to the status register. The contents of the status word before and after
are listed below. Each of the status bits was implemented in the same fashion, therefore,
the other bits do not require individual tests. Figure 4 confirms that the WRITE_LOCAL
bit is the lowest-order bit and thus signal M9 shows the lowest-order bit of the status word

being toggled. This example shows that the DES status word write function is operating

correctly.

150040 NS
M9: ACTIVE /DES_SYSTEM/DES_MAP/U1/STATUS_TO.DES (value = X"0")

150187 NS
M6: ACTIVE /DES_SYSTEM/DES_MAP/U1/WRITE_DES (value = ’1’)
M1: ACTIVE /DES_SYSTEM/DES_MAP/U1/READY_BIT (value = '0’)
M2: ACTIVE /DES_SYSTEM/DES_MAP/U1/ERROR_BIT (value = ’0’)
M4: ACTIVE /DES_SYSTEM/DES_MAP/U1/WRITE_LOCAL (value = ’1’)
M3: ACTIVE /DES_SYSTEM/DES_MAP/U1/READ_LOCAL (value = ’0’)

160200 NS :
M9: ACTIVE /DES_SYSTEM/DES_MAP/U1/STATUS_TO_DES (value = X"i")

6.5.4.3 DES Microcode Testing The tests for the microcode routines were
performed using a modular technique. Thé routines were tested as they appear in the
following sections. All of the microcode routines are inlcuded in Appendix B. The four
sections include: Initialize Simulation, Post Message, Get Event, and Post Event. Figure 14
shows the configuration of the simulation to be executed during the testing process. The
input and output arcs in Figure 14 are mapped to the RAM partitions for the respective

LPs.

1. Initialize Simulation
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Figure 14. Carwash Configuration

As mentioned in the examples in Chapter V, there are three components to be con-
cerned with when testing the microcode routines. The first component to be checked
was the DES RAM unit. The mexﬁory listing that follows shows the LP_.DELAY,
SIM_TIME, I/O_ARCS, Input arcs, and output arcs as configured in TaLble 1. The
listing shows the specific information for LP1 and LP2. The partitions are labeled
below for clarification. The input and output arc information is contained in bits 25

down to 18 of the memory words. The node number is encoded in bits 25 down to

23 and the LP is encoded in bits 2\2 down to 18.
MEM_NIBBLE(

165467 NS & ‘
M1: ACTIVE /DES_SYSTEM/DES_MAP/U2/RAM_RW/MEM_NIBBLE (value =

(LP1’s RAM Partition:
X"00000004", X"00000000", X"OFOSOOOI". X"00000400", X"00000400",

X"00001000", X"00001400",

LP2’s RAM Partition:
X"00000004", X"00000000", X"00030002", X"00000800", X"00001CO0",

X"00000800", X"00001400", X"00001800",
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The GPRs were checked next to ensure the status registers had the correct number

of input arcs reflected in their respective bit vectors. There should be a 0 in each
input arc bit position for every LP. The following data trace shows the GPR contents
after the initialize Simulation routine had completed execution. In this listing of the
GPRs, registers 33 and 34 contain the status registers for the specified LPs. The
status registers examined are labeled below for clarificai'on. Since register 33 has a
single 0 in the lowest order bit (Hex E = “1110”), LP1 must have only one input
arc. Figure 14 shows the configuration of the CARWASH simulation which confirms
this fact. Register 34 corresponds to LP2 and has a 0 in the two lowest order bits.
From Figure 14 register 34 is 5.1so correct. Theses examples provide a high-level of

confidence in the status register routines that sets up the LP status registers.

165410 NS '
M: ACTIVE /DES_SYSTEM/DES_MAP/U0/U22/GPR_REGISTERS (value =
(X"00000000", X"00000017", X"OOO0002E", X"00000045", X"0000005C",
X"00000073", X"0000008A", X"000000A1", X"000000B8", X"00000OCF",
X"000C00ES", X"0000OOFD", X"00000114", X"0000012B", X"00000142",
X"00000159", X"00000170", X"00000187", X"0000019E", X"000001B5",
X"081C0000", X"00080000", X"00000000", X"00000001", X"00000000",
X"00000035", X"000003FC",
LP1’s Status Register: X"OOOOO3FE",
LP2’s Status Register: X"000003FC",
X"00000000", X"000C0000", X"00000000", X"00000000", X"00000000",
X"00000000", X"00000000", X"00000000", X"00000000", X"00000000",
X"00000000", X"00000000", X"00000000", X"00000000", X"00000000",
X''"00000000", X"00000000", X"00000000", X"00000001", X"FFFFFFFF",
X"0003FC00", X"04080008", X"04080008", X"00000000", X"03FC0000",
X"000003FF", X"00000000", X'"00000000", X"00000001"))

The last component tested in this process is the CAM. The CAM array is constructed
within ViDL using the generate command. This command does not allow listing of
the contents of the memory, therefore, the CAM could not be listed for documentation
purposes. The word select lines were observed during several rcads and writes to
ensure the events were placed in the correct locations. The following listing shcws

an input for LPO being reserved in the first word of the CAM. The bit string has a
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1 located in the highest order bit which corresponds to the reservation of the first

input arc.

144190 NS
M2: ACTIVE /DES_SYSTEM/DES_MAP/TAG_ADDRESS (value = X"80000000")

. Post Message

The RAM unit remains unchanged during the execution of the Post Message rou-
tine; therefqre, the LP status registers and CAM information were examined during
testing. First, the LP status registers are listed after an event is written. The in-
formation in the Initialize Simulation listings can serve as the state of the hardware
prior to the execution of the Post Message opcode. The data extraction below shows
the LP status register for LP1 after receiving an event on its only input arc. The
status register now contains a 1 in every input arc bit position signifying the presence

of an event on every input arc. The status register examined is labeled below for

clarification.

228690 NS
M: ACTIVE /DES_SYSTEM/DES_MAP/U0/U22/GPR_REGISTERS (value =

(X"00000000", X"0C0000017", X"OOOOOO2E", X"00000045", X"0000005C",
X"00000073", X"0000008A", X"00000CA1", X"000000B8", X"0OQOOOCF",
X"000000E6", X"00000OFD", X"00000114", X"0000012B", X"00000142",
X"00000159", X"00000170", X"00000187", X"0000019E", X"000001B5",
X"00000001", X"00000002", X'00000400", X"0Q000000A", X"04040000",
X'"00000400", X"00000000", X"03FC0000", X"00000003", X"00000004",
X"00000001", X'"0000001A", X"0OOOO3FC",

LP1’s Status Register: X"OOOOO3FF",

X"000003FC", X"OOOQO3FF", X"COOOO3FC", X"000003FC", X"OOOOO3FE",
X"000003F0", X"00000000", X"00000000", X"00000000", X"00000000",
X"00000000", X"00000000", X"00000000", X"00000000", X'"00000000",
X"00000000", X"00000000", X"00000000", X"00000000", X"00000001",
X"FFFFFFFF", X"0003FCO0", X"08040402", X"00000000", X"00000000",
X'"03FC0000", X"OOOOO3FF", X"00000000", X"00000000", X"QO0003FF"))

To ensure the proper data is being written into the CAM, the CAM_Write assertion,

the local data bus, and the tag address were examined. The data trace that follows
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shows the assertion and states of each signal of concern. All of these values were
decomposed and validated. Each CAM word is directly mapped to a bit of the
TAG_ADDRESS bit vector where the most-significant bit is mapped to the first word
.in the CAM. A “1” in any bit represents a match of the CAM word durirg a search.
The TAG_ADDRESS in the data trace represents the selection of word 6 in the CAM.
The sixth word of the CAM was reserved for input arc LP0 of LP3. Figure 10 shows
the configuration of the CAM bits. The “C” in the LDCAL_DATA_BUS bit vector
corresponds to the lowest order 4 bits of the TO LP field. If the string is converted
to decimal, the TO LP = 3. The lowest order nibble cbrresponds to the time tag for

the event.

206827 NS
Ass~rtion WARNING at 206827 NS in design unit BEHAVE from process

/DES_SYSTEM/DES_MAP/US/CAM_DRIVER/DRIVER:
“CAM ENTERED"
M3: ACTIVE /DES_SYSTEM/DES_MAP/LOCAL_DATA_BUS (value = X"CC000005")

206828 NS »
Assertion WARNING at 206828 NS in design unit BEHAVE from process

/DES_SYSTEM/DES_MAP/US/CAM_DRIVER/DRIVER:
“"CAM WRITE"

206910 NS
M2: ACTIVE /DES_SYSTEM/DES_MAP/TAG_ADDRESS (value = X"04000000")

This data extraction validates CAM functionality using the Post Message routine.
These test provides a sufficiently high-level of confidence in the interfacing of the

hardware and the Post Message routine.

. Get Event

This routine was by far the most complex of the four filters implemented in microcode.
Basically, every component must work properly to obtain accurate results for the
Get Event routine. A Get Event for LP1 was chosen to show a flow of events for
testing validation; therefore, this Get Event opcode was designated for LP1. The first
component to be checked during a Get Event opcode is the LP status register. The
data trace from the Post Message routine shows the status register for LP1 extracted
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and labeled for clarification. The register contains a 1 for every input arc bit which
indicates that an event is ready for processing. LP1 has multiple inputs on the input
arc; therefore, the status register does not change value. The data trace below shows

that LP1’s status register did not change value.

267130 NS ‘ ‘ :
M: ACTIVE /DES_SYSTEM/DES_MAP/U0/U22/GPR_REGISTERS (value =

(X"00000000", X"00000017", X"OO0O0002E", X"00000045", X"0000005C",
X"00000073", X"0000008A", X"000000A1", X"000000B8", X"000000CF",
X"*000000E6", X"0000Q0FD", X"00000114", X"0000012B*, X"00000142",
X"00000159", X"00C00170", X"00000187", X"OOOOO1SE", X"000001BS*",
X"00000002", X"04040000", X"QOOOO3FF", X"00000004", X"04000000",
X"0003FFFF", X"00000006", X"00040000", X"001COO00", X"04040000",
X"00000001", X"000000i8", X"OOOOO3FF",

LP1’s Status Register: X"OOQOO3FF",

X"000003FD", X"O00003FF", X"0OOQO3FC", X"000003FC", X"0Q00OO3FE",
X"Q00003FE", X"00000000", X"00000000", X"00000000", X"Q0000000",
X"00000000", X"00000000", X"00000000", X"00000000", X"00000000",
X"00000000", X"00000000", X"00000000", X"00000000", X'"00000001",
X"FFFFFFFF", X"0003FC00", X"0C040000", X"0C040000", X"00000000",
X*#03FC0000", X"000003FF", X'"00000000", X"00000000", X"00000000"))

The CAM is the next component to be tested. The TAG_ADDRESS corresponds to the .

CAM word selected. LP1 has two input arcs and LP1 has one input arc.. The arcs . "

were reserved in order from LPO to LP7. The TAG_ADDRESS value below corresponds

to the third word in the CAM. Reviewing the CAM configuration, the value on the L ;

local data bus below represents an event from LP1 to LP1 with a time tag of 0. This
word selected was a reserved word for LP1 and provides validation for the CAM find

minimum time tag function because 0 is the smallest time tag.

266514 XS
M2: ACTIVE /DES_SYSTEM/DES_MAP/TAG_ADDRESS (value = X"20000000")

266549 WS .
M3: ACTIVE /DES_SYSTEM/DES_MAP/LOCAL_DATA_BUS (value = X"04040000")

Another Get Event opcode was sent to the DES for LP1 to test the RAM update
function because the first Get Event opcode fcr LP1 had a time tag of zero. The
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data trace below shows the simulation time equal to five. LP1’s RAM partition is
shown below to validate the simulation time change. The second vector represents
the simulation time which has been updated to five. This test validates the operation
of the Get Event routine with the RAM device. All of the data traces for the Get

Event opcode validate operation between the microcode and the hardware.

336307 NS
M1: ACTIVE /DES_SYSTEM/DES_MAP/U2/RAM_RW/MEM_NIBBLE (value =
LP1’s RAM Partition: X"00000004", X"00000005", X"00030001",
' X"00000400", X"00000400", X"00001000",
X"00001400") :

4. Post Event

The Post Event routine was thoroughly tested by monitoring the local and system
bus for null messages. The count of operands that is contained in the lower order
10 bits of the null message and the time tag were examined for accuracy. The count
should equal “1” whenever the event is a null message. The following data trace
“shows the null message retrieved from the DES and the associated count. From
Table 10, the first value of the local data bus shows opcode formatted for a source
and destination LP of one. The second vector represents the time tag which is zero
for this event. The time tag was validated by reviewing the trace from the test data

converted from the Intel Hypercube runs.

212749 NS
M3: ACTIVE /DES_SYSTEM/DES_MAP/LOCAL_DATA_BUS (value = X"10040401")

213349 NS
M3: ACTIVE /DES_SYSTEM/DES_MAP/LOCAL_DATA_BUS {value = X"00000000")

6.6 Summary

Even though a high-level test bench was implemented to interface with the DES
coprocessor, the signals used were realistic signals that provide sufficient validation for

the design. The test vectors were extracted from actual runs on the Intel Hypercube and
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the test results were extracted from many DES simulations. All of these factors together
validate the test process; therefore, the DES coprocessor works correctly and supports the

Chandy-Misra protocol with null messages.
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VII. Results and Recommendations

7.1 Introduction

A structural VHDL description of a DES simulation accelerator coprocessor was im-
plemented to provide a proof of concept for simulation coprocessors. Taylor’s requirements
analysis provided the target areas for communications overhead reduction [21]. The CAR-
WASH model was used to provide a general-purpose simulation for speedup determination.

The SPECTRUM testbed filters were the communications tasks targeted for enhancement.

This chapter details the results and recommendations of this research effort. The
calculation process used to obtain the speedup results are included in this chapter. An
example calculation is provided to validate the calculation process. Additional areas to

increase coprocessor performance are also outlined as part of the recommendations.

7.2 Calculation Process

Simulation speedup was calculated to quantify the results of this thesis effort. With-
out realistic event processing, the potential for speedup would be overstated; therefore, spin
loops of 0, 1,000, and 100,000 were used to model an event being processed but cannot
relate to true event processing times. The amount of speedup is application-dependent. If
the time required for event processing is low, then the potential for speedup will be high.
If event processing takes a considerable portion of the host’s processing time, then the po-
tential speedup decreases rapidly. The calculation process for determining overall éystem
speedup followed the steps in Table 13. To ensure true speedup is stated, the average times
for each routine are compared to the average hardware results. The average times do not

predict peak performance speedup potential, but do provide reasonable speedup ratios.

7.2.1 Hypercube Filter Averages Simulation data was gathered from many simula-
tion runs on the Intel Hypercube to provide sufficient filter information to average filter
processing times. The simulation test data gathered from the Intel Hypercube provides ac-
curate results for the four SPECTRUM filters. Figure 15 shows an example data segment

extracted from a run with the spin loop set to zero.
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Table 13. Speedup Procedures

[ Step | Speedup Procedure |
Calculate Hypercube Filter Averages
Calculate DES Filter Averages
Calculate System Overhead

Final Speedup Calculation

ool nof =

init start time = 9379.883
init stop time = 9380.632 } 749 msecs
get start time = 9393312;;%2 ,

mess start time = 05
mess stop time = gggz_szg } 767 msecs
mess start time = 3.58

mess stop time = 9384.317 } 734 msecs
ot st fime = 9399.93
pOSt start time = 933

post stop time = %21.721 } 1.788 msecs
get start time = 9402.088

get stop time = 9402.747 } 659 msecs
post start time = 9412.484 } 218

post stop time = 9414.664 .13 msecs

Figure 15. Hypercube Simulation Data

f— 11.928 msecs
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Table 14. Cube Filter Times

| Filter | p (msec) | Min (msec) | Max (msec) |

pem—

Init Sim .730 .652 754
Post Msg .808 .063 3.937
Get Event 9.405 .058 33.386
Get Modified 6.460 .058 130.118
Post Event .708 .061 3.960

Table 15. DES Microcode Roatine Test Data Processing Times

| _Filter 14 (mset_ll Min (msec) | Max (msec) |

[Init Sim | 00741 | 00584 | 00900
Post Msg | .00272 00216 | .00312
Get Event .00410 .00200 .00620

Post Event | 00401 | 00392 | 00428

Table 14 provides the average processing times and the percentage of overall process-
ing time per filter for the Intel Hypercube iPSC/2. The Get Modified input was calcn'ated
by subtracting all of the filter calls made while an LP was blocking. The filter call ;hou]d

~ only be counted once to provide an accurate description. The value, 11.928 msecs, calcu-

lated for the first Get Event call in Figure 15 shows an example of filter calls being made

during the Get Event filter call,

7.2.2 DES Filter Averages The simulation data was converted into opcodes and
operands that could be understood by the DES. Assertion statements were inserted into
the VHDL code to signal the start of each opcode. Simulation runs on the DES were
conducted using the opcodes and operands to obtaiu sufficient data to calculate filter
averages using the DES coprocessor. The processing times for the respective DES routines

are included in Table 15.

7.2.3 System Overhead Calculation The system overhead provides the last piece

of information required prior to calculating the total simulation speedup. The system
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Hyprrcube / DES Mean Times
Wall Time = 19.795 ‘
Init Total Time =.749  } Init Mean =749 / .00741
Get Total Time = 12,58
t Total Time = 12.587
Get Calls = 2 }  Get Event Mean = 6.294 / .00410
post Total Time = 3.96% 1 Post Event Mean = 1.984 / .00401

Postt Mo, Catls o = %1} Post Message Mean = 7505 / 00272

Wall Time - Total Filter Time = System Overhead
19.795 - 18.805 = .99 msec

Figure 16. Hypercube Total Times

overhead will be approximately the same with or without the DES coprocessor in use.
The overhead had to be obtained for each of the three spin loops used to model event

processing. Equation 1 was used to compute the system overhead for each of the spin

loops.

System Overhead = simulation wall time - filter processing time (1)

" An example calculation of system overhead is shown in Figure 16. To provide more
realistic filter processing percentages, the data required for this step was collected without
the print statements in the code. The overhead calculated for each of the spin loops is
included in Table 16.

Filter speedup was also calculated to ensure the microcode implementation is an
approach worthy of consideration. The results show that the microcode implementation
appears to be reasonable. Equation 2 was used to compute the filter speedup and the

results are included in Table 17.



Table 16. System Overhead

Spin loop | Overhezd (msec) ]
0 (.295 - .2908) = .00472 |
1,000 (.308 - ,280588) = ,02741
100,000 | (4.038 - ,904512) = 3.1335

Table 17. Coprocessor Speedup Ratios

[ Filter Filter Speedup |
Init Sim © 985
Post Msg 297.1
Get Event 1575.6
Post Event 175.6
FilterSpeedup = (CUBE_TIMES)/(DESTTIMES) (2)

7.2.4 Overall Speedup The CARWASH simulation was executed with spin loops to
emulate the event processing times. This information provides a speedup range depending
on tke application. Table 18 provides a detailed summary of the DES coprocessor per-
centage of processing dedicated to filter execution and the speedup obtained for each spin
loop. The final speedup results were calculated by finding the total simulation time for
the cube divided by the total time for the DES coprocessor. Equation 3 shows the formula
used to calculate speedup.

Speedup = (Simulation T:'nié)/ ((Z (Filter z Filter Calls)) + Overhead)  (3)




Table 18. Overall Speedup using Spin Loops

| Spin Loop { Filter Time as % of Total Processing | Speedup ]

[0 98.4 6032 |
1,000 91.1 11.16
100,000 22.4 : 1.29

7.8 Recommendations

Several areas concerning the CAM, microcode, and DES coprocessor in general were
revealed during this research effort. Some were explored and added to the general-purpose

hardware coprocessor design. The following subsectlons review the areas to be further

examined to potentially provide greater speedup.

7.3.1 CAM Modifications The CAM used within the DES architecture has been
modified to provide a maxima and minima for a subset of CAM wo.rds.‘ This modification
will provide additional speedup for the Get Event routire. This modification eliminates
the hardware implementation problems discussed in Chapter IV. The problem o. surs when
many words attempt to raise a line high and only one drives the line low. This pull-down
capability is not realistic and has been resolved in the new CAM. Only a few modifications
to the front-end drive: will be required to provide this capability. |

7.3.2 Microcode Enhancements in the microcbde are always possible. A more de-
tailed look at the microcode implementation shbuld be approached to ensure maximum
performance. RAM usage as well as inicrocode efficiency should be researched to provide
maximum speedup.

The present architecture is a decimal approach to instruction translation. All of the
control store addresses, instructions, registers, and JUMP addresses are read from a file in
a decimal format and then translated into a binary format by the test bench. An assembler
should be designed to translate the microcode instructions into the binary format required

by the DES. The program should be a multi-pass assembler allowing the use of labels for
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JUMP a.ddreéses. The instruction addresses should automatically be generated to reduce

user overhead.

7.3.8 Behavioral Components Approximately 90 percent of the components have
been converted to a gate-level structural VHDL format. The entire design should be con-
verted and tested thoroughly. MAGIC layouts have been completed for SRAM and CAM
devices within AFIT. Bdth of these devices should be tested thoroughly for compatibility.
Prior to a MAGIC layout being attempted, all of the VHDL structural components should‘

be at the gate level.

7.9.4 Timing Analysis A critical timing analysis should be accomplished to obtaix
peak performance at all times. Each phase in the four-phase clock is presently set to 10

ns. The critical units should be obtained to enable minimal phase widths. If each phase

| can be reduced, the potential for additional speedup can be increased. Once an HSPICE

timing analysis has been conducted on each component the time delays should be updated

in the structural descriptions.

7.8.5 Paradigm Support An analysis of other paradigms should be conducted to |
ensure the DES coprocessor is general purpose enough to support various algorithms.
Variations of the Chandy-Misra protocol should be decomposed to ensure DES usability.
The optimistic Time-Warp protocol also seems to be natural selection to be coded to work

on the DES.

7.3.6 Hardware Implementation The DES coprocessor should be implemented on
the Intel Hypercube iPSC/2. The coprocessor would require a significant redesign to be
ixﬁplemented on the sPSC,/1. The DES provides a 32-bit bus for opcode and operand trans-
fer. The iPSC/1 only provides a 16-bit bus. The interfacing issues should be con‘ronted

early in the next thesis cycle.
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7.4 Summary

The DES coprocessor was designed with general-purpose simulation support as the
primary des’ sn objective. The microcode was written to support the Chandy-Misra pro-
iocol with nuli messages. A test bench was then designed to effectively test the interrupt

and routines, as well as opcode and operand execution.

The speedup varies from 60.32 to 1.29 times when using the DES coprocessor. These
results are more promising for fine-grained (spin loop = 0) than coarse-grzin (spin loop
= 100,000) applications. In fine-grained applications, the DES coprocessor is promising
because the synchronizatiop overhead will no longer be a bottleneck. In coarse-grained

o applications, the DES coprocessor is not as promising because the event processing will be

the bottleneck.
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Appendix A. DES SPECTRUM Algorithms

The following SPECTRUM algorithms are followed to directly support the Chandy-
Misra paradigm. The algorithms implement the corresponding filiers used in SPECTRUM.

The code drives the control driven architecture.

A.1 Read-Only Control Store Procedure

This algorithm is designed to load the control store and
mapping RAM. System address bit two is a zero if the data is
an opcode and a one if the data is an operand. An operand
for this routine is composed of microinstructions for the
con*rol store or mapped addresses for the mapping RAM.

1. Initialize CAM
2. Signal ready to the host
3. VWhen OPCODE, check for = 0
= 1if equal 0 goto step 4
- else goto step 3
4. Wait for data present
= if present then goto §
- else LOOP (GOTO step 4)
. 5. Check to see if it is an OPCODE
- if OPCODE then goto step 8
- else continue (MUST BE AN OPERAND)
6. Load data into the control store or mapping RAM
7. JUMP to step 4
8. Check OPCODE = 0
= 1if equal O then goto START_OF_FETCH_DECODE
- else SIGNAL_ERROR(RELOAD_DATA) and goto step 3

A.2 Fetch/Decode Procedure

This algorithm details the operation of the fetch/decode routine.
This routine loads the common registers for future use and calls
the appropriate function. Register €3 is loaded with the count
of operands to follow the opcode, register 27 is loaded with the
TOLP information, and register 57 (accumulator) is loaded with
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In general, this algorithm setup the LP specific information

the entire opcode for use when selecting the base pointers or
status registers for the specified LP. This operation will be
explained in the actual microcode. Register 56 is the instruction
register and also contains the entire opcode. Register 56 is

used to load the other registers.

1. Wait for data present
- if no data present then LOOP (goto step 1)
2. Check for OPCODE
' = if OPCODE then goto step 3
- olsze
-~ SIGNAL_ERROR(BAD_OPCODE) using Reg22
~-- data = 0000000000000000000000411111111
«~ remove data from the PARIO
-~ reset WRITE_REMOTE/READ_LOCAL status bit
~-= goto step 1
Read data into IR
Load count into ragister 63
Load TO.LP into register 27
Load IR into the ACCumulator ' |
JUMP to IR address ‘

~N OO, w

A.8 Initialize Simulation Prc ceddms

in RAM, setup the status registers for the specified LP,

reserve words in the CAM fcr every input arc, and output a null
message to ~very output arc. Register 23 will be loaded with
the LP delay, register 62 will be loaded with the simulation
time, and register 21 will be loaded with the number of I/0 arcs.
These registers are throughout the intialize simulation routine.

1. Wait for data present
== 1if no data present then LOOP (goto 1)
2. Check for OPCODE
== 1if OPCODE goto 27 »**UNLOAD PARIO AND RESTART#*#*»
== else start load of simulation data
3. Load LP_DELAY into register 23
4. Reset READ_LOCAL/WRITE_RZMOTE status bit
5. Add -1 to count (Reg63) and check = 0
== 1if count = 0 then goto 25 ***ERROR**x




120

13.
14.
16

16.
17.
18.
19.
20.
21.
22,

23.

25.
26.
27.
o 28.
TE——— 29.

--- SIGNAL ERROR(BAD_INIT) goto FETCH_DECODE
--~ data = 00000000000000000000000011111111
Wait for data present
-- if no data present then LOOP (goto 6)
Check for OPCODE
-- if OPCODE gcto 27 ##+*UNLOAD PARIO AND RESTART»##
Load STM_TIME into register 62
Reset READ_LOCAL/WRITE_REMOTE status bit
Add -1 to count (Reg63) and check = 0
== 1if count = 0 then goto 25 ***ERROR#*x
--- SIGNAL ERROR(BAD_INIT) goto FETCH_DECODE
-== data = 00000000000000000000000011111111
Wait for data present
-- if no data prosent then LOOP (goto 11)
Check for OPCODE
-- if OPCODE goto 27 »*#xUNLOAD PARIO AND RESTART#***x
Load #_ARCS_IN/OUT into register 21
Reset READ_LOCAL/WRITE_REMOTE status bit
Add -1 to count (Reg63) and check = 0
== if count = 0 then goto 25 *x*ERROR*#%
--- SIGNAL ERROR(BAD_INIT) goto FETCH_DECODE
=== data = 00000000000000000000000011111111
Load #_ARCS_IN in register 29
Store base pointer in register 31
Store LP_DELAY, SIM_TIME, and #_ARCS in RAM
Setup ARCS_STATUS_REGISTER
Write ARCS_IN directly to RAM
Write ARCS_OUT directly to RAM
Check count = 0 ‘
-- 4if count /= O SIGNAL_ERROR(INIT_DONE) goto 23
-= data = 00000000000000000000000001111111
Save one word in partitioned CAM for each INPUT_ARC
JUMP to FETCH_DECODE '
SIGNAL_ERROR(BAD_INIT)
JUMP to 24
Unload PARIO
Reset READ_LOCAL/WRITE_REMOTE
JUMP to 1

A.4 Post Message Procedures
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In general, this algorithm loads the event into the CAM and
adjacent RAM, and updstes the status register for the specified
LP. Register 26 is used to store the time tag and register 30
is used to store the memory poiuter.

Wait for data present

1.
- if no data present then LOOP (goto 1)
2. Load TIME_TAG in register 26 : ‘
3. Add -1 to count and check = 0 h
= if count = 0 then goto step 10 ***NULL MESSAGE LOAD**x
4. Wait for data present
= if no data present then LOOP (goto 4)
5. Load MEM_PIR in regisver 30
6. Write to partitioned CAM if free;
7. Check CAM_FULL status
- if FULL then SIGNAL_INTR(DATA);
-- data = 01111111
8. Update ARCS_IN_STATUS register
. 9. JUMP to Fetch/Dacode
10. Load register 30 with all 0’s
11. JUMP to step 6

A.5 Get Event Procedures

In general, this algorithm checks to see if an event is ready,
retrieves the event, sends it to the host processor, and updates
the status register for the specified LP. If a null message is
retrieved, nulls are sent to all output arcs a the process starts
over. In order to support the Chandy-Misra paradigm, nulls have
to be sent to all output arcs when a null is retrieved.

1. Check to see if event ready
2. Find minima for specified LP

=~ this word is the next event
3. Retrieve MEM_PTR
4. Update SIM_TIME for specified LP
6. Check for NULL

= if NULL goto 10
6. Reformat CAM word for transfer
7. Output to CUBE
8. Update LP STATUS register
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10.
11.

12.
13.

- check CAM for another EVENT for specified ARC
- update accordingly

JUMP to FETCH/DECODE

Send NULL messages to zll OUTPUT arcs

Update LP STATUS register

= check CAM for another EVENT for specified ARC
- update accordingly

Output NULL messages to all output arcs

JUMP to 1

A.6 Post Event Procedures

This algorithm sends null messages to all output arcs other
than the arc specified in the opcode.

b W N =

6.

9'
10.

12,

Store ARC iafo from message in a register
Retrieve RAM ptr for specified TO_LP
Obtain number of Input Arcs
Obtain number of Output Arcs
Advance pointer to fiirst Output Arc
Read an Output Arc
If equals Arc from messags
- then goto step 10
Format Qutput message
Interrupt CUBE and send message
Advance PTR '
Add -1 to #_OUT_ARCS
Check Zor equal zero
= 12 equal zero then JUMP to FETCH/DECODE
JUMP to step 6
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Appendix B. DES Microcode Routines

The following microcode was implemented according to the algorithmsin Appendix A.

The available commands are listed in Appendix C.

B.1 Read-Ohly Microcode

This section of code is required to load the control store and the mapping ram

whenever the DES is reset.

Ao oo o ook oo oo o oo o ok ok ok ok kR kR ko kR ok Rk ok kR ek kR kR

Y ‘
*% Lines 0 - 3 are house cleaning instructions. These
#+ commands prepare the CAM and DES for processing.

L2
el ok o o ok e o o e o o o o e o o o e ok o ok ok ko ko KR R R K R skl ks ok R o R Rk Rk Rk ke kK

0. JUAP to 1;
1. CAM_INIT;

= this instruction initializes the CAM for use
2. If not (CAM_COMPLETE) goto 2
= loop until initialization complete

3. SIGNAL_READY;
- set status to READY

LI LTI e e L R T g e L T T e e
*a

*+ Lines 4 - 9 are used to read the opcocy and check to sec
#+ if it equals zero. If the opcode equals zero, then

#+ initialization can begin. Else the DES will wait for
*x the next opcode.

%
BEEBERERRRRRRRERRERERRRRKRREKERRERRERERRERRRERRRRRKKRRKRKRERR K
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9.

If not (OPCODE and READ_LOCAL) goto 4

- wait for data present
» an opcode is expected to start the load

Input_Data;

Regb6 := MBR;

If ZERO goto 10

Read_Local_Toggle,

- toggle read_local bit of vhe status register

JUMP to 4;

oo o o oo ol o o o i e ot o o o ok e o o o o ook o o ok ok o a0 o a8 ok oo e e e ol o e o o o o R o ol ok ok ok oKk

L2
x%
®k
=%

10.

11.

12.

13.

14,

15.

Lines 10 - 15 read microinstructions into the control
store. Tais code loops uatil an oprode is erccunterad.

ARk o R oo ok sk o ok ok ok kbl Rk sk ok kokoR R ok ok ok ok R Rk koK b

BEGIN_LOAD;

- change control store state to load
If not (READ_LOCAL) goto i1

It 0?CODE goto 16

Input_Data;

Read_Local _Toggle;

JUMP to 11;

REERRRREEKERRRERARRRRE R KRR RRRRRERRRE R R Rk R kR R Rk Rk k gk

e
%%
L 3]
[ 1]
L 1

Lines 16 - 19 are required to rcad the opcode, check to
see if it equals zero, and jump accordingly. If the
opcode aquals zero then the loading has completed in a
correct manner. If the opcode does nct equal zero, then
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** the load : be restarted.

= ,
50 ok e o o e o e ok o e o o e o o 3k ok o o 3K o8 3 o 2 a3k o e ol e o o o ok ok o e ol ok ol ok o K R e a ok ok ok ok ok ok

16. Input_Data;
" 17. Read_Local_Toggle;
18. RegS6 := MBR;

- place contents of MBR in register 56

19. If ZERO goto 23

a3 o 2 o o o o o o oo o o o o o o o o ok o o o e e o oo oo o o oo o o o o ok ok o ok ok ok kR

ok
*+ Lines 20 ~ 22 are required to signal an error and jump
#%  to the address 4 to restart the initial load.

L 24
A a2 o ok ok o o e o o o o 7 2 ok 3 of o ok o o o ok e o o o e o o o o o ok K o o e o o o ol oo ko o ok o

Z0. HBR := Reg60;
21. SIGNAL_ERROR;

- toggle the error bit and write.local bit in tha
status register

22. JUMP to 4;

BERRARRRKEEREREERERKERRRERRRERARRR RS RRARRRB KRR R KRR AR AR A
. B

»* Lines 23 and 24 are used to end the successful load and
#% jump to the fetch/decode routire.

L 2]
SRREERRRREERERERXRRRERRERERRRERREERELRR R RRERR R Rk kR Rk LR

23. END_LOAD;

24. JUMP to 32;




B.2 Fetch/Decode Microcode

This routine is designed to load all common registers and call the correct routine.

The TOLP, COUNT, accumulator, and IR are all loaded with the appropriate data fqr

processing.

“‘t#.###‘tt““"l“‘#“‘t*ﬁ“#‘!#‘.‘(4####“#‘#“##‘##‘*##

e .
** Lines 32 and 33 wait for data and then ensures it is an

** opcode before continuing.
e
LD TR L

32. If not (READ_LOCAL) then goto 32
= Wait for data
33. 1If OPCODE then goto 41

= Check for OPCODE
SEERRRREENERER BRI RERERRARRAAERRRER AR RERARERRAERRRR AR ER SRR D
1 4
s+ Lines 34 - 40 compose a routine that is called whenever
*#+ an operand is read when an opcode should have been read.
** The error vector = "0111111111" for this type of error.

2
ERERRRRRRRARREEREERARREREREREERERERRBRERER AT AR AR R RERR R R KRR

34. Reg22 := BAND(Reg22, 0);
36. Reg22 := BOR(Reg22, Regt5);
36. Reg22 :» RSHIFT8(Reg22);
37. Reg22 := RSHIFT8(Reg22);
38. QOutput_Data;

39. SIGNAL_ERROR;

40. JUMP to 32
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EREERRRRRRRRREERRRE R ERRRERRERRRERRER KRR kR kKRR KE &

%%
L 2
L b
L 2]
*%
L2
L 2]

Lines 41 - 51 are reguired to load the count in reg63,
TOLP info in reg27, opcode in regS6 (IR), and regS7.
Register 57 is the accumulator. Masks :1e used to
ensure only the desired data is loaded in the target
register. '

.**#*#i*tt*##**#*###**##**###*###‘%***t##*t***##‘*#*#####tt*

41.

42.

43.

44.

45.

48.

49.

50.

51.

Reg63 := BAND(Reg63, Reg52);

Reg27 := BAND(Reg27, Reg52);

Rog57 := LSAIFT(BAND(Reg57, R2_MUX(ACC, 0)));
Reg63 . 1UR(Reg63, Regs0); |

Reg27 := BOR(Reg27, Reg59);

Input_Data;

Regb6 := MBR;

Reg63 := BAND(Reg63, RegSé);

Reg27 := BAND(Reg27, Reg56);

Reg57 := BOR(Reg57, Reg56);

Read_Local_Toggle;

BRRRREERRRERRRE KRR RRRRDR KRR RRRR R RR R R KRR R R R R R R kR E

%
®%

Lines 52 and 53 are required to signal to the node that

2% the DES is ready and then to jump to the code specified

»e
*%
L2t

52.

83.

in the mapping ram for the routine identified in the IR.
T R T R R T P PP P P e P e e
SIGNAL_READY;

JUMP to Mapping RAM(IR);
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»* Lines 500 and 501 are used to set the DES back into a

*«* ready state. Processing will not continue until the DES
*%x has returned to the ready state.

*%
waRkk kR gk kR kR Rk Rk kR kR kg kR kR kR ok

54. SIGNAL.READY;

- 85. JUMP to 32;

B.8 Initialize Simulation Microcode

This code is used to load all LP specific information into DES RAM, reserve words in
the CAM for all input arcs, setup the status register for each LP, and output null messages

to all output arcs. This routine has to be executed for each LP in a given simulation.

kR kkk kR kk gk Rk ek gkk kR bk kk kg kg h kR kkxkk
%

*s Linas 60 and 61 will force the DES to wait for data,

*+ check to see if it is an opcode (Only operands should

** be¢ sent to the DES at this time), and jump to the error
#* routine if an operand is read.

%
##tt#*###*###t#tt#####ttt#t#tttﬂttt#t##t‘#*t#*###*#t#*#*i#**

60. If not (READ_LOCAL) then goto 60

- wait for data present, loop if not
61. If OPCODE then goto 175

= should be an operand

RREXEERRREREERERL KRR R REERREERER RN AR SRR R R R ERRRRRRRERRRE RN
2]

** Lines 62 -~ 66 load the LP_DELAY for the specified LP

*+ into register 23, reset the read_local bit of the status
*+ register, decrement and check tne count register, and
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»+ jump to line 176 if the count equals zero.
#* NOTE: The count should not equal 2ero because the
*» gimulation time and arc information has not been read.

*k
BhRARR Rk RR kR Rk kR kR Rk RRoR kR kR kR kR R Rk Rk ORR Rk Kk

62. Input_Data;

-~ this command will enable data onto the local data bus
63. ‘Reg23 := MBR;

= Load the LP_DELAY into register 23
64. Reg63 := Regb3 + Regs4;‘

- decrement count

65. If ZERO then goto 175

- count should not be zero yet; still have to load
SIM_TIME, #_ARCS and the I/O0.ARCS

66. Read_Local_Toggle;

T T e e et T
b :
*+ Lines 67 - 73 load the simulation time for the LP
! ** into register 62, reset the read_local bit of the status
* ** register, decrement and check the count register, and
*+ jump to line 175 if the count equals zero.
#x NOTE: The count should not equal zero because the arc
#* information has not been read.

L L
BRREEERERREKERRERKKRERRERRERRERERRRERKRRERRERRERERRKRRKKKRKEEE

67. If not (Read_Local) goto 67

68. If OPCODE then goto 175

/ _ - should be an operand
1 //
S 69. Input_Data;
/o
| A - this command will enable data onto the local data bus
1
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70. Reg62 := MBR;
- Load the SIM_TIME into register 62
71. Reg63 := Reg63 + Regb4;
= decrement count
72. 1f ZERO then goto 175
73. Read_Local_Toggle;

T L T e P P e e ot
LT

#+ Lines 74 - 80 load the number of 1/0 arcs for the LP

** into register 21, reset the read_local bit of the status
*+ register, decrement and check the count register, and

#* jump to line 175 if the count equals zero.

*% KOTE: The count should not equal zero because all of

=+ the arc information has not been read.

1 .
e e et e T e e e e f e oY

74. If not (READ_LOCAL/WRITE_REMOTE) then goto 74
. = wait for data present, loop if not
76. 1If OPCODE then goto 175

- should be an operand

~ 76. Input_Data;

= this command will enable data onto the local data bus
77. Read_Local_Toggle;
78. Reg2l := MBR;

= Load the #_ARCS_IN/OUT into register 21
79. Reg63 := Reg63 + Regd4;

« decrement count
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80. 1If ZERO them geto 175
- count should not be zero yet; the I/O_ARCS

Bk kR ok ko ok ok Rk kR kR R ok kR kR R ROk R R R Rk ko Rk Rk Rk Rk kR
LT

»+ Lines 81 and 82 load the base pointer for the LP into

#+ register 31 Ior use when loading the input and output

** arcs into RAM. R2_MUX(ACC, 0) specifies the LP base

*% pointer. The ’0’ is used for bit5 of the R2_MUX to

#*+ point to registers O through 19. A ’1’ would be used
*x to specify registers 32 through 51 (status registers).

xR
Ao o ok o o ok R ook R R R OR R Rk o o Kok R o kR R kR ok Rk ok sk Rk ok ok o

|
81. Reg31 := BAND(Reg31, RegS2);

- ‘gero register 31

I

82. Reg3! := BOR(Reg31, R2_MUX(ACC, 0));

- Load the base pointer into register 31

l
*###t****k#*************#*****#****##**#*#*#*******t#**###**

1
e i A
Ll Linea§83 - 91 are responsible for storing the delay for
** the LP, simulation time, and the number of I/0 arcs into
** the LP’s RAM partition.
= 1

P
83. MBR := Reg23; HAﬁ := Reg31;
- start store of the LP_DELAY into DES RAM
84. RAM_WRITE;
= causes write to RAM
85. Reg31 := Reg31 + Reg53;

= advance RAM ptr

86. MBR := Reg62; MAR := Reg3i;




- 7 - start store of the SIM_TIME into DES RAM
'_// - 87. RAM_WRITE;
| -~ causes write to RAM
) B 88. Reg31l := Reg31 + Regb3;
;: - advance RAM ptr
},, - 89. MBR := Peg21; MAR := Reg3l;
- - start store of the #_ARCS into DES RAM
‘ 90. RAM_WRITE;
»:; - causes write to RAM
91. Reg3i := Reg31 + Reg53;
N - advance RAM ptr
a T T T T e A T
,,/{’J' :: Lines 92 - 94 sets up register 29 to be used when
/ #* gotting up the status register. Register 29 will
e - #x contain the number of I/0 arcs after these imstructions.
: 2

R T T P P F R
92. Reg29 := BAND(Reg29, Reg52);

'f/"ffw K ~ zero register 29

93. Reg29 := BOR(Reg29 , Reg60);

= prepare register 29 to AND with register 21 to obtain the
#_ARCS_IN

e 94. Reg29 := BAND(Reg29, Reg21);
= register 29 now contains the #_ARCS_IN

PRRRRERRRERRRBRRERERERRRRRERER AR KA R AR RRE KRB RBRRRRERXRERE KRR

i ~ 103
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s
*+ Lines 95 - 101 sets up the status register for the

*+ sgpecified LP. The R1_MUX(ACC, 1) is used to select the
** the status register instead of the base pcinter.

*¥ .
BRRERRk kR Rk kR kR R kR Rk kR kR kR R ko Rk kKR Rk

'95. RI;HUX(ACC. 1) := BAND(R1_MUX(ACC, 1), Reg52);

= 2ero STATUS register for specified LP
- the ’1’ solects the STATUS register

96. R1_MUX(ACC, 1) := LSHIFT(RI;HUX(ACC, 1) + Reg53);
- preparing STATUS register
97. Reg29 := Reg29 + Reg54;
- decrsment ARCS_IN_COUNTER
98. If ZERO then goto 100
99, JUMP to 96;
100. RAMUX(ACC, 1) i= RSHIFT(RIMUK(ACS, 13);
101. R1_MUX(ACC, 1) := BXOR(R1_MUX{ACC, 1), Reg60);
L Reg 60 000000000000000000000000000000001111111111
Stat Reg. 000000000000000000000000000000000011111111

Result 000000000000000000000000000000001100000000

= the status register is now ready
= this is an example of an LP with 8 input arcs

BERRRRRRRRRERRRRE KRN KKRR R R Rk R R Rk Rk Rk

*%
% Lines 102 - 104 load the number of input arcs into
** register 29 for input arc loading.

&R
SRREEREEERERARREERRRRR KRR KEEREEEB KRR RS R AR R R KR KRR R R Rk

L 102, Reg29 := BAND(Reg29, Reg52);

: éls_ = 2ero register 29 again
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103.

104.

Reg29 := BOR(Reg29, Reg60);
' Reg29 := BAND(Reg29, Reg21l);

-~ register 29 now contains ARCS_IN count’

kR kkkk ko kR kR Rk kR ok ke Rk kR ko ok kR Rk &k koK

L L]
L 1
x%
%
L2
L3
L 1)

Lines 105 - 126 compose a loop which loads the input
arcs into RAM and then reserves a word in CAM for
future use. The number of input arcs is decremented
and checked each time to determine when the loop has
completed. The count is also checked each time.

Ao e e e o o oo o A o o oo e ot o o o o o o R RO R kR K ok e o o o o oo ol ol ko ok ook ok ek ok ok ko

105.

106.

107.

108,

109.

110.

111.

112.

113.

114.

118.

116.

117.

If not (Read_Local) goto 108
If OPCODE goto 175
Input_Data;

Reg22 := MBR;

MBR := Reg22; MAR := Reg3i;
RAM_WRITE;
Read_Local_Toggle;

Reg24 := BAND(Reg24, Reg52);
Reg24 := BCR(Reg24, RegS5);
Reg24 := BAND(Reg24, Reg22);
-~ store FROM_NODE/LP in register 24
Reg26 := BAND(Reg26, RegS2);
Reg26 := BOR(Reg26, Reg59);

Reg26 := BAND(Reg26, Reg27);
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- store TO_NODE/LP in register 26
118. Reg26 := LSHIFT8(BOR(R§g26, Reg24));
119. MBR := Reg26;
120. CAM_RESERVE_ARC;
121. Reg31 := Reg31 + Regs3;
122. Reg29 := Reg29 + Regb4;
123. 1If ZERO then goto 127
124. Regf3 := Reg63 + Regb4;
125. 1If ZERO goto 175
126. JUMP to 105;
127. Reg63 := Reg63 + Reg54;

128. 1If ZERO then goto 175

SRk xRk Rk Rk ok kR kR Rk Rk kR kR kR Rk Rk kR
e

#* Lines 129 - 144 compose a loop which loads the output.
#* arcs into RAM. The count is checked each time to

*#+ determine when the loop is completed. Register 29 is
** loaded again using register 21 and right shifted 16

*+ times to obtain the number of output arcs which is

#% located in the leftmost 16 bits of the word. After
** the first time through the loop the return address is
#* 133 because the number of output arcs does not need to
** be recomputed.

®%
|
#t*#t##t*t#*#t‘***#*#*****#**t**‘***‘#*#?*#**#*ti#**n##*#*‘#

129. Reg29 := BAND(Reg29, Reg52);
= 2ero register 29 to use for count]r for OUTPUT arcs
130. Reg29 := RSHIFT8(BOR(Reg29, Reg21));

131. Reg29 := RSHIFT8(Reg29);
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" 143. If ZERO then goto 175

ACH

132. Reg25 := BOR(Rag25, Reg29);
133. If not (Read_Local) goto 133
134. If OPCODE goto 175
135. Input_Data;
- this command will enable data onto the local data bus

136. . Reg22 := MBR;
137. MBR := Reg22; MAR := Reg3i;
138. TAM_WRITE; |

i
139. MAR := Reg3i; ‘
140. Reg29 := Reg29 + Reg54;
141. 1If ZERO then goto 175

142. Reg63 := Regb3 + Rogb4;

144. JUMP to 133;

B T T P
e 3

#x Lines 145 - 155 compose a set of commands that are used
** to setup the registers and the RAK base pointer for use
*+ yhen formatting and transferring null messages to start
*% the simulation.

L
BRRAXERRERRERERRRRRARRKERERRRRRRRRERRE AR R EERREARRREREKERERR

145. Reg31 := BAND(Rag31i, RegS2);
146. Reg31 := BOR(Reg31, R2_MUX(ACC, 0));
- reset the base pointer to start of partition

147. Reg31 := Reg31 + RegS3;
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148.
149,
150.
1561.
152.
183.

154,

155.

Reg29 := BAND(Reg29, Reg52);
Reg31 := Reg31 + Regb3;

Reg29 := BOR(Reg29, Reg60);

Reg29 := BAND(Reg29, Reg21);

Reg27. := RSHIFT8(Reg27);

Reg31 := Reg3i + Beg53;

Reg31 := Reg31 + Reg29;

- advance pointer to start of ARCS_OUT
Reg23 := Rog23 + Reg62;

- regisfer 23 now contains the TIME_TAG

o e e o o 0 o o o o o ok o o o o e e e o o e 3 o o o o o o 0 e o e o 2 o o ol oo ol e e e o o e o o o o oo o o o o ko

®%
k%
L L]
*%
L L)
*%
%
*%

Lines 156 - 174 are used to complete data packet
formatting and sending the null messages to the node
processor. Line 161 inserts a ’1’ in the lowest order
bit <o specify that there will be one operand following
the original data packet. The infoination following .
will be the time tag for the message.

RRRERRRRERARERRRERRRRRREE R AR R ARk dok Rk kR kR d Rk

186.

1857.

188.

159.

160.

MAR := Reg31l;

RAM_READ;

Reg24 := MBR;

Reg24 := LSHIFT8(Reg24);

- this command shifts the OUTPUT_NODE/LP into the
TO_NODE/LP field for the POST EVENT message

Reg24 := BOR(Reg24, Reg27);
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161.
162.

163.

164.
165.
166.
167.
168.

169.

17Q.
171.
i72.
173.

174.

Rog24 := BOR(Reg24, RegS3);

If not (Write_Local) then goto 162
MBR := Reg24;
- all 1’s => POST EVENT Interzupt
Dutput-Dafa;

MBR := Reg60;

SIGNAL_INTERRUPT;

If not (Write_Local) goto 167
MBR := Reg23;

Output_Data;

- place data in the PARIO device
Write_Local_Toggle;

Reg31 := Reg31i + Regb3;

Reg29 := Reg29 +.Regs4;

If ZERO goto 500

JUMP to 156;

LI 2SI E 23 Rt 2 f bRttt s it ess s tidstitiistztetiidds]

*5
.k
%
®E
L2
L 1]
Lt 21

175.

176.

Lines 175 - 181 compose an error routine called whenever
an opcode is read. Only operands should be read during
the iritialize simulation routine. The error vector for
this error is 1111111111,

BREEERERRRERREREEREBRREEERREEERRERSRERRERERRER R R R AR KRR
If not (Write_Local) goto 176

MBR := Reg60;
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177. Output_Data;

178. Write_Local_Toggle;

179. SIGNAL_ERBOR;

180. If not (Write_Local) goto 180

181. JUMP to 54;

B.4 Post Message Microcode

BERESERER R RRRRERE R Rk kRN R ER Rk kR R Rk Rk Rk Rk

.
** Lines 198 - 204 are written to wait for data, which is

#» the time tag, read it into register 26, toggle the
*» read_local bit of the status register, decrement the
** counter, and check to see if count equals zero.

*%
RERRREREERRRRERARRERRRRRRERRE RN R KRR RE AR R AR R R R R ER kR bR

198. If not (READ_LOCAL) then goto 198
- wait for data present
199. If OPCODE then goto 260

200. Input_Data;

= this command will enable data onto the local data bus
201. Read_Local_Toggle;
202. Reg26 := MBK;

= Load TIME_TAG into register 26
203. Reg63 := Reg63 + Regb4;

- decrement count
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204. 1If Z2ERO goto 268

t“####““#‘#*‘.“‘##‘*#t‘####‘t##t“#tﬁ‘#“itt#ﬁ#i!tt#“t#

L1
*«+ Lines 205 - 209 are written to wait for data, which is
#+» the memory pointer, read it into register 30, and toggle
»+ the read.local bit of the status register.

"
PABRBEEERRARESERE R R B RA KRG ER R B R A SRR R ERR SRR AR KRR R RS

205. If not (Read_Local) goto 205
206. It OPCODE goto 260
207. Input_Data;
208, Read_Local_Toggle;
209. Reg30 := MBR;

= Load fhe memory pointer into register 30
T T T e
:: Lines 210 - 217 piaces the TOLP/NODE information into
*+ register 24 as part of the formatting routine to store
s+ the word into the CAM.

*¥
EERRBRRRERERRERRERREXRRRAERRREEERERRRRERR AR R R AR RRERRRREREERE

210. Reg24 := BAND(Reg24, Regb2);
211. Reg24 := BOR(Reg24, Reg59); \
212. Reg24 := LSHIFT(BAND(Reg24, Reg27)); \
= TO0.info is now located in register 24
213. Reg24 := LSHIFT(Reg24 + Reg24);
-~ double left shift
214. Reg24 :» LSHIFT(BAND(Reg24, Reg59));

= removes the TO_NODE field from the register
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215.

216.

217.

"
.
-
tt
-

218.

- 219,
220.
221,

222,

\ P
\ {2

-
-
\ -
e
=

223.

'Reg24 := LSHIFT(Reg24 + Reg24);

- double left shift
Reg22 := BAND(Reg22, Reg52);

- double left shift ‘
- register 24 now has the TO_LP field properly located

Reg24 := LSHIFT(Reg24 + Reg24);

SRERRERERERERRREKRERERERERERRRRRRRRRRRR R R KRR R R Rk kR kR Rk

Lines 218 - 222 adds the FROM LP/NODE information and
time tag into register 24 as part of the formatting
routine to store the word into the CAM.

ARk Rk kR R kR Rk kR Rk Rk kR Rk KRk kR ko ok kR

Reg22 := BOR(Reg22, RegS5);

-~ Tregister 22 now contains the ?ROH field
= it must dbe left shifted

Reg22 := BAND(Reg22, RegS7);
Reg22 := LSHIFT8(Reg22);
Reg24 := BOR(Reg24, Reg22);

Reg24 := BOR(Reg24, Reg26);

ERRRRRRRRRRRERRRRRRERPRERRREEEREER R R R R Rk kR ok k

Lines 223 - 226 writes the event to the CAM. The DES
does not continue processing until the CAM has signalled
back to the DES that the CAM is not full. The CAM_MATCH
flag is used to determine if the CAM is full. A jump to
address 270 means the CAM is full,

BERRRRERRRERFERRERKRERRRRRRRRRREREERERERRRBERRRRR KR RESRR R RN

MBR := Reg24;
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' 224. CAM_WRITE_WORD;

226. If not (CAM_COMPLETE) goto 226
226. If not (CAM_COMPLETE) goto 270
227. Reg31 := BAND(Reg3i, RogSé);
228. Reg31 := BOR(Reg31, R2 MUX(ACC, 0));
- stores the base pointer for RAM in register 31
229. Reg31 := Reg31 + RegS3;

LIIES LIS TSI R LRttt it ittt ittt tadtidtisd
'
s» Lines 230 and 231 writes the memory pointer to the

#* adjacent RAM.
L L
RRERRRE R ARKERREERRERRRBEEERERRRRR R RERRRRER R R SRR RE R KR E R R kK

230. MBR := Reg30;

231. ADJ_RAM_WRITE;

T T T e T T S P e oy e 2
"

#» Lines 232 -~ 242 are resporsidble for preparing for

#* status register updating. The base pointer has to be

s+ advanced to the first input arc and the number of arcs
#* has to be retrieved for arc reading.

%
BEREEARAREEARKEEREKRRXERREEREEERRREEBEERRBEREERRRERERRR R AR R ER

232. Reg31i := Reg3i + Regh3;
233. MAR := Reg3i;
234. RAM_READ;
235. Reg30 := MBR;
= read number of input arcs into register 30

236. Reg31 := Reg31 + Regb3;
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237.
238.
239.
240.

241,

242 .

Reg20 := BAND(Reg20, R;552):
Reg20 := BOR(Reg20, RegS3);
Reg22 := BAND(Reg22, RegS2);
Reg22 := BOR(Reg22, RegS55);
Reg30 := BAND(Reg30, Reg60);

= this command loads the FROM field into register 22 for
comparison to the RAM input arcs

Reg22 := BAND(Reg22, RegS7);

AR R kR Rk kR Rk ko kok Rk ROk Rk kR ok kook kR ok kR Rk Rk

L 2]
L b
L L
®e
%
Lid
L b
%

Lines 243 - 252 compose a loop which determines which
arc a message has been received on and sets up a bit
pattern to bde used when updating the status register.
Lines 253 and 254 performs the updating of the status
register. A simple OR instruction is used to set the
appropriate bit to a 1. ‘

Rk kR kR sk ok ok o e e kol ok o o o ok o ok ok ok ok ok ok

243.

244.

245,

246.

247.

248.

249.

250,

251.

MAR := Reg31;

RAM_READ;

Reg25 := MBR;

ALU := BXOR(Reg25, Reg22);
If ZERO then goto 253
Reg31 := Reg31 + RegS3;
Reg20 := LSHIFT(Reg20);
Reg30 := Reg30 + RegS54;

If ZERD then goto 276
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252.

253.

254.

L2 2 1)
L2
L 2]
"%
L2
L2
*%

JUMP to 243;
R1_MUX(ACC, 1) := BOR(R1i_MUX(ACC, 1), Reg2o);
JUMP to 500;

AR RRRRERERRRERRERRRKRRREERRRRRERRRRR Rk Rk Rk Rk ke kR ®

Lines 260 - 266 compose the routine which specifies an

error has occurrvud. The error message sent to the host
processor signifies that an opcode was received when an
operand was expected.

BREARRERE R RN R R EE KRR RN R Rk KRRk Rk ok ok koK

260.

261.

262.

263.

264.

265.

266.

If not (Write_Local) goto 260
MBR := Regf0;

Output_Data;
Write_Local_Toggle;
Signal_Error;

If not (Write_Local) goto 265

JUMP to 500;

RRREERERRRRREERRRRRRRRRER KRR Rk R R R R R KRRk Rk R kR kR k kg
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L L

Lines 268 and 269 are used to load a null message into
rogister 30. These two lines of code are called from
vhenever a message is received an no memory pointer is
specified.

BREERERERRERRERRARERREEREREEE SRR R ABRAR KA RRNRRRRR KRR RERERER

268.

269,

Reg30 := BAND(Reg30, Regb2);

JUMP to 210;

ERXARERENRRRRFERERRERRER AR AR RS R AR RRRRRERRRRRRRRRBRRERR RN &K

%
L 24

Lines 270 - 276 compose an error routine which is called
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*% whenever»the CAM is full. The error vector = 00000001.

%
BRRRRRRRER KK R R TR R KRR KRR KRR AR AR ARk ok Rk ARk Rk R oK

270. If not (Write_Local) goto 270
271. MBR := RegS3;

272. Output_Data;

273. Hrite_Local;Toggle;

274. SIGNAL_ERROR;

275. 1If not (Write_local) goto 275

276. JUMP to 54;

Ao o o o s o ok o o oo o oK o ok ok o 3 ok o e o o o R ok e oo o ko kR ok ok kR kK ok ek ok

1
*+ Lines 277 - 287 composs an error routine which is called
#* vhenever there are no matching arcs for the destinztion
#* LP. The error vector = 11111111,

% .
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277. Reg30 := BAND(Reg3C, RegS52);
278. Reg30 := BOR(Régso. Reg60);
279. Reg30 := RSHIFT(Reg30);

280. Reg30 := RSHIFT(RegSO);

281. If not (Write_Local) goto 281
282. MBR := Reg30;

283. Output_Data;

284. Write_Local_Toggle;

285. Signal _Error;

286. If not (Write_Local) goto 286
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287. JUMP to 500;

B.5 Get Event Microcode

Moo oo ool oo o o oo o oo R o o oo o o o e e o o oo oo o o o e e e oK o o o 0
L 3

** Lines 349 - 352 checks to see if an event is ready for

#* the specified LP.
L L]
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349. Reg22 := BAND(Reg22, RegS52);
350. Reg22 := BOR(Reg22, R2_MUX(ACC, 1));

- store STATUS register for specified LP in register 22
351. ALU := BXOR(Reg22, ﬁegeo);

352. If ZERC then goto 362

###*##*###ﬁ###t#**#*tt#**#tt*#*####tt#**t#**t###t*#****#tt##
*

*+ Lines 353 ~ 361 compose an error routine which signals
% the host processor that an event is not ready.

L L )

T T T e L e T e T e e T

353. Reg22 := BAﬂD(Beg22, Reg52);

364. Reg22 := RSHIFT(BOR(Reg22, Reg60));
366. Reg22 := RSHIFT(Reg22);

356. MBR := Reg22;

357. Output_Data;

358. SIGNAL_ERROR;
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359. Write_Local_Toggle;
360. If not (Write_Local) goto 360

361. JUMP to 54;

LR L T e T e e T T P P T P P2 E
L1 .
*+ Lines 362 - 364 are used to format a 32-bit message to
#* be used by the CAM’s front end driver to locate the

% e¢vent with the smallest time tag for the appropriate LP.

L L3
kR koo e sk ok koo kR kR ok Rk kR ok kR Aok ok ko ok Kok Rk kK R Rk

362. Reg24 := BAND(Reg24, Reg52);
363. Reg24 := BOR(Reg24, Reg27);
364. Reg24 := LSHIFT8(Reg24);

e e T e g P T e e S P I e TR P E e E e
ok

** Lines 365 - 368 commands the CAM to perform a search for
*+ the minimum time tag for the specified LP. The DES will
*+ wait until the CAM has returned control to the DES.

L L
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365. MBR := Reg24;
366. CAM_MIN_FIND_AND_READ;
367. 1If not (CAM_COMPLETE) goto 367

368. If not (CAM_MATCH) goto 486

REERRRRRRREARRARRRERRRRERRERRRR SRR RRRRARRRAAANA RS RERRRRS
L) '

*+ Lines 369 - 372 performs a read of the event from the

#*» cam and a read of the memory pointer from the adjacent
*+ RAM. The event is stored in register 29 and the memory
#* pointer is stored in register 30.

1

P IR T R T e e e e

118




369.

370.

CAM_READ;
Reg29 := MBR;

- store EVENT in register 29

371. ADJ_RAM_READ;

372.

- read adjacent RAM
Reg30 := MBR;

- store MEM_PTR in register 30

290000 e e o a2 2 ke o o o ol o e o o o s e e o ok o oo o e e e e o e o o o o ool o o ok sl e ok ook ok sk o ok ol ko ok ok ok ok

X
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Lines 373 - 387 performs an update of the simulation
time for the specified LP. The delay for the LP is
stored in register 25 to be used to determine the time
tag for the output event.

ISR S E4 1t et a s ittt ta2ss sttt isssssdiddssd)

373.

374.

378.

376.

3r7.

378.

379.

380.

Reg21 := BAND(Reg21, RegS2);

Reg21 := BOR(Reg21, Reg29);

Reg31 := BAND(Reg31, RegS2);

Reg31 := BOR(Reg31, R2_MUX(ACC, 0));
- store base pointer in register 31
MAR := Reg31i;

RAM_READ;

Reg23 := MBR;
- store LP_DELAY into register 23
Reg31 := Reg31 + RegS3;

= advance pointer
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381.

382.

383.

-384.

385.
386.
387.
1
-
»*
2
2

L L
L 3]

388.

389.

390.

391.

392.

393.

394.

395.

396.

Reg25 := BAND(Reg25, Rag52);

Reg25 := BOR(Reg25, RegSO):

Reg25 := BOR(Reg25, Reg55);

Reg25 := RSHIFT(Reg25);

- register 26 now contains the TIME_TAG
Reg25 := BAND(Reg25, Reg29);

MBR := Reg3i; MAR := Reg25;

RAM_WRITE;

TR R R R R R ARk ok kR R ok kR KR R ko R ok kR kR K

Lines 388 - 405 composes a series of comminds that
partially formats the output event, obtains the number
of arcs for status updating, and searches for another
event on the same arc. If another event is in the CAM,
then the status register doos not need to be changed.

BERRFERER ERRR R R RE R R R R R R R E R RNk f Rk ok kR kR kR kR

Reg25':= Reg25 + Reg23;

- register 25 now contains the message time including delay
Reg31 := Reg31l + Regh3;

MAR := ﬁeg31; |

RAM_READ;

Reg28 := MLR;

Reg31 := Reg31 + Regb3;

Reg23 := BAND(Reg23, RegS2);

Reg23 := BOR(Reg23, Reg28);

Reg28 := BAND(Reg28, Reg60);
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397.

398.

399.

400.

401,

402.

403.

404.

405.

Reg21 := RSHIFT8(Reg21);

Reg21 := BAND(Reg21i, Reg55);

Reg23 := RSHIFT8(Reg23);

Reg23 := BAND(Reg23, Reg60);

Reg23 := RSHIFT8(Reg23);

MBR := Reg29;
CAM_SEARCH_TOLP_FROM;

If not (CAM_COMPLETE) goto 404

It CAM_MATCH goto 420

RERERRRRRERRBRREREERREEERARRRRRRRRERRRRERERERERKERRRRRRRRER K

xR
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%
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%
LE L2

406.

407,

408.

409.

410.

411,

412,

413,

Lines 406 - 420 composes a loop which updates the otatus
register for the specified LP and then checks to see if
the memory pointer is a null message. All 0’s signifies
a null message. If the messazge is null, then a null is

. sent to all output arcs and another event is retrieved

if it is ready.

EERRRRERRRRRRRRRREARREEREREREREREREEERRERRERRERERRR KR EKRE

Reg20 := BAND(Reg20, RegS52);
Reg20 := BOR(Reg20, Regb3);
MAR := Reg3i;

RAM_READ;

Reg26 := MBR;

ALU := BXOR(Reg26, Reg21);
If ZERO goto 419

Reg31 := Reg31 + RegS3;
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414.

415.

416.

417.

419.

420.

421.

Reg20 := LSHIFT(Reg20);
Reg28 ﬁ- Reg28 + Regf-;
‘It ZERD goto 486
JUMP to 408;
RIMUR(ACC, 1) := BYOR(RIMUX(ACC, 1), Reg20);
ALU := Rog30;

If ZERQO goto 450

HRRBERHERFRRRRRRRRRRRRRRRRRKRR R R AR RRRR Rk SRk Rk kR gkk Rk

%
=
L L]
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L 2
L2
L 2
L 2]
L 2]

Lines 422 - 448 composes & zeries of instructions which
transmits the event, time tag, and memory pointer to the
hosts node for processing. This code is only executed
vhen the event is not a null messaze. Register 20
contains the event, register 22 ccatains the interrupt
vector, register 25 contains the time tag, and register
30 contains the memory pointer.

BREERRRRREERRDRRRERERER SRR RIRBR R R R R R R Rk kR Rk RdkR

422,

423,

424.

425,

426,

427.

428,

429,

430.

Reg20 := BAND(Reg20, Reg52);
Reg20 := 503(30520, Reg55);
Reg20 := BAND(Reg20, Reg21);
Rey28 := 321D(Reg28, Reg52);
Reg28 := ROR(Reg28, Reg27);
Reg28 := BiND{Reg28, RegS9);
Reg20 := BOR(Reg20, Reg28);
Reg20 := Reg20 + Regs3;

If not (WRITE_LOCAL) goto 430
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V. | b
I ; .
-
3 ‘§ 431. Reg20 := Reg20 + RegS3;
”fifly” 432. MDR :» Reg20;
.%' ;,/ 433. Output_Data;
A e ' 434. Reg22 := BAND(Reg22, RegS2);
}"\ - 435. Reg22 := BOR(Reg22, Reg60);
L 436, Reg22 := LSHIFT(Reg22);
IR 437. MBR := Reg22;
R 438. Signal_Interrupt;
o 439. If not (WRITE_LOCAL) goto 439
‘ 440. MBR := Reg25;
.é ‘ 441. Output_Data;
; ifi?axi 442. Write_Local_Toggle;
’E/ﬂg- 443, 1If not (WRITELOCAL. goto 443
“ﬁ?*\(‘- 434, MBR := Regd0;
445. Output_Data;
§  L 446. Write_Local_Toggle;
\ = \ 447. In not (WRITE_LOCAL) goto 447
i*%; f 448, JUMP to 54;
,1. / | T T e T T
‘ "
2 \ #* Lines 450 - 486 composes a loop which sends a null
(IS ** message to every output arc because a null message was
v } ' ** retrieved. Register 20 contains the formatted event,

Vol o
L %
-

register 60 contains the interrupt vector (11111111),
and register 25 contains the time tag.

| . EERRERRRRRRERRERRERRRRRERRKRE AR R R ERE KRR RRRRE R R R R KRRk ok ok ok ko
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450. Reg31 := BAND{Reg31, Reg52);

451. Reg31 := BOR(Reg31, R2_MUX(ACC, 0));

452. Reg31 := Reg31 + RagSs3;

453. Reg23 := BAND(Reg23, Reg52);

454. Reg31l := Reg3i + Regs3;
455. MAR := Reg31;
456. RAM_READ;

457. Reg28 := MBR;

458. Reg23 := BOR(Reg23, Reg28);

459. Reg28 := BAND(Reg28, Reg60);

460. Reg23 := RSHIFT8(Reg23);

461. Reg31 := Reg31 + Reg2s;

462. Reg3l := Reg31 + RegS3;

463. Reg23 := RSHIFT8(Reg23);

464. Reg23 := BAND(Reg23, Reg60);
465. MAR := Reg31i; N
466. RAM_READ;

467. Reg20 := MBR;

468. Reg20 := LSHIFT8(Reg20);
469. Reg30 := BAND(Reg2d, Reg52);
470. Reg30 := BOR(Reg30, Reg27);

471. Reg30 := RSHIFT8(Reg30);
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472.

473.

474,

475.

4786.

477.

478.

479,

480.

481.

482,

483,

484.

485,

486,

Reg2n := BOR(Reg20, Reg30);

Reg20 ;. Reg20 + Regb3;

If not (WRITE_LOCAL) goto 474
MBR := Reg20;

Output_Data;

MBR := Reg60;
SIGNAL_INTERRUPT;

If not (HRITE_LOCAL) then goto 479
MBR := Reg25;

Cutput_Data;
Write_Local_Toggle;

Reg23 := Reg23 + RegS4;

If ZERO goto 54

Reg31 := Reg31 + Reg53;

JUMP to 465;

PERRBERRRRRRRRR R R RN SRR RRRERERRE RS RRRERRR RS R KRR RRRRR R KRRy

L L]
e
"
*”n
"

Lines 487 - 495 are an error routine which signifies
that the DES thought an event was ready, but could not
retrieve one from the CAM.

CRREREARNERRR RSN R ERR PR R R ERERRRRER LR ARAEINRAARAAR AR R ARG R R RN

487.

488.

489.

490.

Reg20 := BAND(Reg20, Regb2);
Reg20 := BOR(Reg20, Reg60);
Reg20 ‘= RSHIFT8(Reg20);

If not (WRITE_LOCAL) goto 490
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491. MBR := Reg20;

492. QOutput_Data;
493, SIGNAL_ERROR;
494, 1If not (WRITE_LOCAL) goto 494

495. JUMP to 54;

. B.6 Post Event Microcode

L T T T Tl

s
#* Line 299 shifts the source NODE/LP information over

*x into bits 17 down to 10 as part of message formatting.

8
BRRRRRKRRRERRRRRRR R R Rk ok o o ok ko ok ok ok ok ok ko

299. Reg27 := RSHIFT8(Reg27);

t"**t#tt##t#tt##*"*#‘##*#***#**#*#*####*###*****##*##**ﬁ#f

L1
*+ Lines 300 - 308 are used to wait for data, read the data
s+ vwhich contains the time tag, advance the RAM pointer,
*+ and reset the read_local bit of the status register.

L 2
RERRRRRRREEERRERRERRRERER R R R R R R Rk Rk ko kg kR

300. 1If not (Read_Local) goto 300

301. 1f OPCODE goto 260

302. Reg31 := BAND(Reg31, Reg52);

303. Reg31 := BOR(Reg31, R2_MUX(ACC, 0));
304. Reg31 := Reg31 + Reg53;

306. Input_Data;
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= this command will enable the data onto the local data bus

~. . - read it into the DES
" ‘ - reset the READ_LOCAL/WRITE_REMOTE bit of the status

,f' register

306. Reg26 := MBR;

‘ '>'f1 - Load TIME_TAG into register 26
7 } ( 307. Read_Local_Toggle;

3 308. Reg31 := Reg31l + RegS3;

g 5 T L Ll Lt L T T T e T e PP e T T

e o

Y #* Lines 309 - 318 are used to read the number of input

s *+ and output arcs into register 21, store the arc info
o ** into register 31, mask off the number of output arcs

L ** in register 21, advance the RAM pointer to the first

** output arc, and right shift register 30 so it only

** contains the number of output arcs.

-
RERRRRRRRRERRRRREERRERRRREERRRRRRERRRRR R ROk kR kxR ok kg k

309. MAR := Reg31;
310. RAM_READ;
311. Reg21 := MBR;
312. Reg30 := BAND(Reg30, Reg52);
313. Reg30 := BOR(Reg30, Peg21);
314. Reg21i := BAND(Reg21, Reg60);
- register 21 now contains‘the 8_ARCS_IN

316. Reg31 := Reg31 + Reg2i;

- - advance RAM ptr to start of Output Arcs

7 316. Reg31 := Reg31 + RegS3;
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317. Reg30 := RSHIFT8(Reg30);

318. Reg30 := RSHIFT8(Reg30);

BRERRERRRRRRRRRRE TR AR R ER R KRR RRRR R R R R RN RR SRk
% .

** Lines 319 - 342 compose a loop which is used to retrieve -
% output arcs, format the message, and transmit the data

#* to the host processor. The arc receiving the real

*» message will not be sent a null message. Line 325

#x chocks to ensure the arc roceiving the roal message is

*x not sent a null message.

L L]
A0 oo oo e 2 o o e o o o a2 o o 0 e o o o oo oo ek ook o o o o o oo o o ok o o o ook o R ook ok ok o

' 319. Reg28 := BAND(Reg28, RegS2);
Co | 320. Reg28 := BOR(Reg28, Reg60);
| 321. Reg28 := RSHIFT8(Reg28);

% 322. MAR := Reg3i;

! 323. RAM_READ;

324. Reg24 := MBR;

325. ALU  := BXOR(Reg24, Reg22);

o . 326. If ZERO then goto 338

327. Reg24 := LSHIFT8(Reg24);

328. RegS57 := BXOR(Reg57, Reg59);

329. Reg57 := BOR(Reg57, Reg24);

- 330. If not (WRITE_LOCAL/READ_REMOTE) then goto 330
331. MBR := Regh7; |

332. Output_Data;
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333,

334.

336.

, 337.
L 338.
/'/V/ -
N 339.
’/'/’ ; ) .
gy 340.

341,

342.

336.

MBR  := Reg28;

= interrupt vector = 00000011
SIGNAL_INTERRUPT;

If not (WRITE_LOCAL/READ_REMOTE) then goto 335
MBR  := Reg26;
= send TIME_TAG out

= an interrupt will not be used
- the CUBE is expecting an opergnd
Output_Data;

Write_Local_Toggle;

Reg31 := Reg31 + Reg53;

= advance RAM pointer to the next output arc
Reg30 := Reg30 + RegS4;

- decrement the number of output arcs left

If ZERO then goto 64

JUMP to 322;
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~N O OV W N

13'

16.
16.
i7.
18.
19.
20.
21,
22,
23.

24.
25.
26.
27.
28.
29.
30.
a1.
32,
33.

35.
36.
37.

Appendix C. DES Microcode Instruction Set

Micro Program Instructions

R1 := BAND(R1, R2);
Ri := BXOR(R1, R2);
R1 := BOR(R1, R2);

Rt := R1 + R2;

R1 := Ri;

ALU := BAND(R1, R2);
ALU := BXOR(R1, R2);
ALU := BOR(R1, R2);

ALU := R1 + R2;

. ALU := Ri;
. R1 := BAND(R1, R2_MUX(ACC, 0));

R1 := BXOR(R1, R2_MUX(ACC, 0));
R1 := BOR(R1, R2_MUX(ACC, 0));

. R1 := R1 + R2_MUX(ACC, 0));

R1 := BAND(R1, R2_MUX(ACC, 1));

R1 := BXOR(R1, R2_MUX(ACC, 1));

R1 := BOR(R1, R2_MUX(ACC, 1));
R1 := R1 + R2_MUX(ACC, 1));

R1_MUX(ACC,1) := BAND(R1_MUX(ACC, 1), R2);

R1_MUX(ACC,1) :
R1_MUX(ACC,1) :
R1_MUX(ACC,1) :
R1_MUX(ACC,1) :

R1_MUX(ACC, 1)
R1_MUX(ACC, 1)

R1 := LSHIFT(BAND(R1, R2));
R1 := LSHIFT(BXOR(R1, R2));
Rt := LSHIFT(BOR(R1, R2));
R1 := LSHIFT(R1 + R2);

R1 := LSHIFT(R1);

R1 := RSHIFT(BAND(R1, R2));
R1 := RSHIFT(BXOR(R1, R2));
R1 := RSHIFT(BOR(R1, R2));
R1 := RSHIFT(R1);

R1 := LSHIFT8(BAND(Ri, R2));

. Rl := LSHIFT8(BXOR(R1, R2));

R1 := LSHIFT8(BOR(R1, R2));
R1 := LSHIFT8(R1 + R2);
Rl := LSHIFT8(R1);

BXOR(R1_MUX(ACC, 1), R2);
BOR(R1_MUX(ACC, 1), R2);

+ R2);
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38. R1 := RSPIFT8(BAND(Ri, R2));
39. R1 := RSAIFT8(BXOR(R1, R2));
40. R1 := RSHIFT8(BOR(R1, R2));
41. R1 := RSHIFT8(R1 + R2);

42, R1 := RSHIFT8(R1);

g 43. R1 := LSHIFT(BAND(R1, R2_MUX(ACC, 0)));
: ' 44, R1 := LSHIFT(BXOR(R1, R2_MUX(ACC, 0)));
. 45. R1 := LSHIFT(BOR(R1, R2_MUX(ACC, 0)));
46. R1 := LSHIFT(R1 + R2_MUX(ACC, 0)));
L 7. R1 := RSHIFT(BAND(R1, R2_MUX(ACC, 0)));
. 48. R1 := RSHIFT(BXOR(R1, R2_MUX(ACC, 0)));
- 49. R1 := RSHIFT(BOR(R1, R2_MUX(ACC, 0)));
50. R1 := RSHIFT(R1 + R2_MUX(ACC, 0)));
51. R1 := LSHIFTS8(BAND(R1, R2_MUX(ACC, 0)));
NI 52. R1 := LSHIFT8(BXOR(R1, R2_MUX(ACC, 0)));
AP 63. R1 := LSHIFT8(BOR(R1, R2_MUX(ACC, 0)));
N 54. R1 := LSHIFT8(R1 + R2_MUX(ACC, 0)));
o 55. R1 := RSHIFT8(BAND(R1, R2_MUX(ACC, 0)));
SO 56. R1 := RSHIFT8(BXOR(R1, R2_MUX(ACC, 0)));
N §7. R1 := RSHIFTS8(BOR(R1, R2_MUX(ACC, 0)));
Lo 5§8. R1 := RSHIFT8(R1 + R2_MUX(ACC, 0)));

LSHIFT(BAND(R1, R2_MUX(ACC, 1)));
LSHIFT(BXOR(R1, R2_MUX(ACC, 1)));
61. R1 := LSHIFT(BOR(R1, R2_MUX(ACC, 1)));
62. Ri := LSHIFT(R1 + R2_MUX(ACC, 1)));
63. R1 := RSHIFT(BAND(R1, R2_MUX(ACC, 1)));
AR 64. Ri := RSHIFT(BXOR(R1, R2_MUX(ACC, 1)));
- 4%_‘, 65. R1 := RSHIFT(BOR(R1, R2_MUL(ACC, 1)));
NN 66. R1 := RSHIFT(R1 + R2_MUX(ACC, 1)));
RN 67. R1 := LSHIFT8(BAND(R1, R2_MUX(ACC, 1)));
NS 68. R1 := LSHIFTS8(BXOR(R1, R2_MUX(ACC, 1)));
AR 69. Ri := LSHIFT8(BOR(R1, R2_MUX(ACC, 1)));
Rl 70. R1 := LSHIFT8(R1 + R2_MUX(ACC, 1)));
o 71. R1 :s RSHIFT8(BAND(R1, R2_MUX(ACC, 1)));
A 72. R1 := RSHIFTS(BXOR(R1, R2_MUX(ACC, 1)));
N 73. R1 := RSHIFT8(BOR(R1, R2_MUX(ACC, 1)));
| 74. R1 := RSHIFT8(R1 + R2_MUX(ACC, 1)));

7 §9. R1 :
- 60. R1 :

L 75. R1_MUX(ACC,1) := LSHIFT(BAND(R1_MUX(ACC, 1), R2));
| 76. R1_MUX(ACC,1) := LSHIFT(BXOR(R1.MUX(ACC, 1), R2));
77. R1_MUX(ACC,1) := LSHIFT(BOR(R1_MUX(ACC, 1), R2));

T 78. R1_MUX(ACC,1) := LSHIFT(R1_MUX(ACC, 1) + R2));
Y 79. R1_MUX(ACC,1) := LSHIFT(R1_MUX(ACC, 1));
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80.

RSHIFT(BAND(R1_MUX(ACC, 1), R2));

S R1_MUX(ACC,1) :=
o 81. R1_MUX(ACC,1) := RSHIFT(BXOR(R1_MUX(ACC, 1), R2));
' 82. R1_MUX(ACC,1) := RSHIFT(BOR(R1_MUX(ACC, 1), R2));
83. R1_MUX(ACC,1) := RSHIFT(R1_MUX(ACC, 1) + R2));
: 84. R1_MUX(ACC,1) := RSHIFT(R1_MUX(ACC, 1));
- 85. R1_MUX(ACC,1) := LSHIFT8(BAND(R1_MUX(ACC, 1), R2));
- 86. R1_MUX(ACC,1) := LSHIFT8(BXOR(R1_MUX(ACC, 1), R2));
, 87. R1_MUX(ACC,1) := LSHIFT8(BOR(R1_MUX(ACC, 1), R2));
Y \ 88. R1_MUX(ACC,1) := LSHIFTS8(R1_MUX(ACC, 1) + R2));
e 89. R1_MUX(ACC,1) := LSHIFT8(R1._MUX(ACC, 1));
o . 90. R1_MUX(ACC,1) := RSHIFTS8(BAND(R1_MUX(ACC, i), R2));
A 91. R1_MUX(ACC,1) := RSHIFT3(BXOR(R1_MUX(ACC, 1), R2));
Fod 92. R1_MUX(ACC,1) := RSHIFTS8(BOR(R1_MUX(ACC, 1), R2));
93. R1_MUX(ACC,1) := RSHIFT8(R1_MUX(ACC, 1) + R2));
| 94. R1_MUX(ACC,1) := RSHIFT8(R1_MUX(ACC, 1));
I 95. MAR := R2; MBR := Ri;
/\\ 96. Rl := MBR;
: «,{ CE 97. MBR := Ri;
‘ s 98. SIGNAL_INTR(DATA);
A 120. MAR := R2;
{ -/~
T STATUS COMMANDS
99. SIGNAL_READY;
. 100. SIGNAL_ERROR;
/ 101. READ_LOCAL/WRITE_REMOTE;
T 102. WRITE_LOCAL/READ_REMOTE;
MSL CHECKS
103. IF OPCODE THEN GOTO R1/R2
o 104. IF NOT (OPCODE and READ_LCCAL/WRITE_REMOTE) THEN GOTO Ri/R2
S 105. IF ZERO THEN GOTO R1/RZ .
RO 106. IF NOT (READ_LOCAL/WAITE_REMOTE) THEN GOTO R1/R2
B 107. IF NOT (WRITE.LOCAL/READ_REMOTE) THEN GOT R1/R2
T 108. IF CAM_MATCH THEN GOT R1/R2 {
R 109. IF MIN_COMPLETE THEN GOTO R1/R2 '
s 110. JUMP TO R1/R2
e 111, JUMP TO IR(MAPPING_ROM)
, 131. IF NOT (CAM_MATCH) THEN GOTO Ri/R2
132. IF NOT (CAM_COMPLETE) THEN GOTO R1/R2 .
,f“3< RAM INSTRUCTIONS -
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112, RAM_WRITE(1);
113. RAM_WRITE(2);
114. RAM_WRITE(3);
115. RAM_WRITE(4);
116. RAM_READ(1);
117. RAM_READ(2);
118. RAM_READ(3);
119. RAM_READ(4);

Content-Addressable Memory Instructions

~121. CAM_INIT;

122. CAM_MIN_FIND_AND_READ;
123. CAM_SEARCH_TOLP_FROM
124. CAM_WRITE_WORD

125. CAM_RESERVE_ARC

126. CAM_READ;

127. ADJ_RAM_WRITE;

128. ADJ_RAM_READ;

DATA TRANSFER WITH CUBE

129. INPUT_DATA;
130. OUTPUT.DATA;
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Appendix D. DES VHDL Behavioral and Structural Code

This appéndix contains the a complete behavioral VHDL listing of all the files used
in the DES coprocessor. All of the VHDL files were written using Syncpsys VHDL. A
partial structural listing is also included, but all of the components in the J. ES are not at
the structural level. The source code is listed in volume 2 of this research effert. A copy of
volume 2 can be requested through the VLSI Lab, Department of Electrical and Computer

Engineering within the School of Engineering.
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